Article

Independent generation of A beta 42 and A beta 38 peptide species by gamma-secretase

Molecular Neuropathology Group, Department of Neuropathology, Heinrich Heine-University, D-40225 Duesseldorf, Germany.
Journal of Biological Chemistry (Impact Factor: 4.6). 07/2008; 283(25):17049-54. DOI: 10.1074/jbc.M802912200
Source: PubMed

ABSTRACT Proteolytic processing of the amyloid precursor protein by beta- and gamma-secretase generates the amyloid-beta (Abeta) peptides, which are principal drug targets in Alzheimer disease therapeutics. gamma-Secretase has imprecise cleavage specificity and generates the most abundant Abeta40 and Abeta42 species together with longer and shorter peptides such as Abeta38. Several mechanisms could explain the production of multiple Abeta peptides by gamma-secretase, including sequential processing of longer into shorter Abeta peptides. A novel class of gamma-secretase modulators (GSMs) that includes some non-steroidal anti-inflammatory drugs has been shown to selectively lower Abeta42 levels without a change in Abeta40 levels. A signature of GSMs is the concomitant increase in shorter Abeta peptides, such as Abeta38, leading to the suggestion that generation of Abeta42 and Abeta38 peptide species by gamma-secretase is coordinately regulated. However, no evidence for or against such a precursor-product relationship has been provided. We have previously shown that stable overexpression of aggressive presenilin-1 (PS1) mutations associated with early-onset familial Alzheimer disease attenuated the cellular response to GSMs, resulting in greatly diminished Abeta42 reductions as compared with wild type PS1. We have now used this model system to investigate whether Abeta38 production would be similarly affected indicating coupled generation of Abeta42 and Abeta38 peptides. Surprisingly, treatment with the GSM sulindac sulfide increased Abeta38 production to similar levels in four different PS1 mutant cell lines as compared with wild type PS1 cells. This was confirmed with the structurally divergent GSMs ibuprofen and indomethacin. Mass spectrometry analysis and high resolution urea gel electrophoresis further demonstrated that sulindac sulfide did not induce detectable compensatory changes in levels of other Abeta peptide species. These data provide evidence that Abeta42 and Abeta38 species can be independently generated by gamma-secretase and argue against a precursor-product relationship between these peptides.

0 Followers
 · 
125 Views
  • Source
    • "Interestingly, this shift in initial docking and production lines is also observed in four of the six PSEN1 mutants (Figure 5C and D). The fact that some FAD–PSEN1 mutations combine these two mechanisms (impaired fourth cycle and change in the product line preference) explains the direct and indirect correlations between Ab38 and Ab42 levels reported in the past (Czirr et al, 2008; Page et al, 2008). Our study thus demonstrates that FAD mutations cause qualitative changes in the Ab profiles by various mechanisms (Bentahir et al, 2006; De Strooper, 2007), and that decreased release of intracellular domains (Kelleher and Shen, 2010) is not an essential part of the AD pathogenic mechanism. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms by which mutations in the presenilins (PSEN) or the amyloid precursor protein (APP) genes cause familial Alzheimer disease (FAD) are controversial. FAD mutations increase the release of amyloid β (Aβ)42 relative to Aβ40 by an unknown, possibly gain-of-toxic-function, mechanism. However, many PSEN mutations paradoxically impair γ-secretase and 'loss-of-function' mechanisms have also been postulated. Here, we use kinetic studies to demonstrate that FAD mutations affect Aβ generation via three different mechanisms, resulting in qualitative changes in the Aβ profiles, which are not limited to Aβ42. Loss of ɛ-cleavage function is not generally observed among FAD mutants. On the other hand, γ-secretase inhibitors used in the clinic appear to block the initial ɛ-cleavage step, but unexpectedly affect more selectively Notch than APP processing, while modulators act as activators of the carboxypeptidase-like (γ) activity. Overall, we provide a coherent explanation for the effect of different FAD mutations, demonstrating the importance of qualitative rather than quantitative changes in the Aβ products, and suggest fundamental improvements for current drug development efforts.
    The EMBO Journal 04/2012; 31(10):2261-74. DOI:10.1038/emboj.2012.79 · 10.75 Impact Factor
  • Source
    • "sA␤PP␤ could also represent a key element between tau-and amyloidopathies. The specific fate of A␤ 38 may be related to its lower aggregation tendency when compared to A␤ 40 or A␤ 42 , as well as its distinct production pathway by the ␥ secretase [49] [50], which might be modulated by sA␤PP␤ and/or Tau. Anyway, it is quite difficult to conclude on the effect of these modifications since A␤ 38 has, to our knowledge, no specific physiological effects. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To improve the etiological diagnosis of neurodegenerative dementias like Alzheimer's disease (AD) or frontotemporal dementia (FTD), we evaluated the value of individual and combined measurements of the following relevant cerebrospinal fluid (CSF) biomarkers: Tau, 181p-Tau, Aβ38, Aβ40, Aβ42, sAβPPα, and sAβPPβ. This study conducted in two centers included patients with FTD (n = 34), AD (n = 52), as well as a control group of persons without dementia (CTRL, n = 42). Identical clinical criteria and pre-analytical conditions were used while CSF biomarkers were measured using commercial single and multiplex quantitative immunoassays. Thorough statistical analyses, including ROC curves, logistic regressions, and decision trees, were performed. We validated in AD the specific increase of p-Tau levels and the decrease of Aβ42 levels, two biological hallmarks of this disease. Tau concentrations were highest in AD and intermediate in FTD when compared to CTRL. The most interesting results were obtained by focusing on amyloid biomarkers as we found out in FTD a significant decrease of sAβPPβ, Aβ38, and Aβ40 levels. Aβ38 in particular was the most useful biomarker to differentiate FTD subjects from the CTRL population. Combining p-Tau and Aβ38 led us to correctly classifying FTD patients with sensitivity at 85% and specificity at 82%. Significant changes in amyloid biomarkers, particularly for Aβ38, are therefore seen in FTD. This could be quite useful for diagnosis purposes and it might provide additional evidence on the interrelationship between Tau and AβPP biology which understanding is essential to progress towards optimal therapeutic and diagnostic approaches of dementia.
    Journal of Alzheimer's disease: JAD 06/2011; 26(3):553-63. DOI:10.3233/JAD-2011-110515 · 4.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gamma-secretase complex is a prime target for pharmacological intervention in Alzheimer's disease and so far drug discovery efforts have yielded a large variety of potent and rather specific inhibitors of this enzymatic activity. However, as gamma-secretase is able to cleave a wide variety of physiological important substrates, the real challenge is to develop substrate-specific compounds. Therefore, obtaining structural information about gamma-secretase is indispensable. As crystal structures of the complex will be difficult to achieve, applied biochemical approaches need to be integrated with structural information obtained from other intramembrane-cleaving proteases. Here we review current knowledge about the structure and function of gamma-secretase and discuss the value of these findings for the mechanistic understanding of this unusual protease.
    Seminars in Cell and Developmental Biology 12/2008; 20(2):211-8. DOI:10.1016/j.semcdb.2008.10.007 · 5.97 Impact Factor
Show more