Calculation and use of the Hardy-Weinberg model in association studies.

Vanderbilt University, Nashville, Tennessee, USA.
Current protocols in human genetics / editorial board, Jonathan L. Haines ... [et al.] 05/2008; Chapter 1:Unit 1.18. DOI: 10.1002/0471142905.hg0118s57
Source: PubMed

ABSTRACT Hardy-Weinberg equilibrium (HWE) is an important tool for understanding population structure. If certain assumptions are met, genotype and allele frequencies can be estimated from one generation to the next. In genetic association studies, HWE principles have been applied to detect genotyping error and disease susceptibility loci. The focus of this unit is to review the key principles and assumptions of HWE. There is a brief discussion on how the significance of HWE is tested, and a review of current applications of HWE in association studies. The applications discussed include estimating penetrance, evaluating genotyping errors, testing for population stratification, and testing for association.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low dopamine D2 receptor (D2R) levels in the striatum are consistently reported in cocaine abusers; inter-individual variations in the degree of the decrease suggest a modulating effect of genetic makeup on vulnerability to addiction. The PER2 (Period 2) gene belongs to the clock genes family of circadian regulators; circadian oscillations of PER2 expression in the striatum was modulated by dopamine through D2Rs. Aberrant periodicity of PER2 contributes to the incidence and severity of various brain disorders, including drug addiction. Here we report a newly identified variable number tandem repeat (VNTR) polymorphism in the human PER2 gene (VNTR in the third intron). We found significant differences in the VNTR alleles prevalence across ethnic groups so that the major allele (4 repeats (4R)) is over-represented in non-African population (4R homozygosity is 88%), but not in African Americans (homozygosity 51%). We also detected a biased PER2 genotype distribution among healthy controls and cocaine-addicted individuals. In African Americans, the proportion of 4R/three repeat (3R) carriers in healthy controls is much lower than that in cocaine abusers (23% vs 39%, P=0.004), whereas among non-Africans most 3R/4R heterozygotes are healthy controls (10.5% vs 2.5%, P=0.04). Analysis of striatal D2R availability measured with positron emission tomography and [(11)C]raclopride revealed higher levels of D2R in carriers of 4R/4R genotype (P<0.01). Taken together, these results provide preliminary evidence for the role of the PER2 gene in regulating striatal D2R availability in the human brain and in vulnerability for cocaine addiction.
    Translational psychiatry. 02/2012; 2:e86.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of genetic polymorphisms may help identify putative prognostic markers and determine the biological basis of variable prognosis in patients. However, in contrast to other variables commonly used in the prognostic studies, there are special considerations when studying genetic polymorphisms. For example, variable inheritance patterns (recessive, dominant, codominant, and additive genetic models) need to be explored to identify the specific genotypes associated with the outcome. In addition, several characteristics of genetic polymorphisms, such as their minor allele frequency and linkage disequilibrium among multiple polymorphisms, and the population substructure of the cohort investigated need to be accounted for in the analyses. In addition, in cancer research due to the genomic differences between the tumor and non-tumor DNA, differences in the genetic information obtained using these tissues need to be carefully assessed in prognostic studies. In this article, we review these and other considerations specific to genetic polymorphism by focusing on genetic prognostic studies in cancer.
    BMC Medicine 06/2013; 11(1):149. · 7.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Improving the amplification and analysis of highly degraded DNA extracts has been a longstanding area of research in forensic genetics. One of the most promising recent developments in analysis of degraded DNA is the availability of short, biallelic insertion-deletion length polymorphisms (InDels) in highly multiplexed assays. InDels share many of the favourable characteristics of single-nucleotide polymorphisms (SNPs) that make them ideal markers for analysis of degraded DNA, including: analysis in short amplicon size ranges, high multiplexing capability and low mutation rates. In addition, as length-based polymorphisms, InDels can be analysed with the same simple dye-labelled PCR primer methods as standard forensic short tandem repeats. Separation and detection of fluorescently dye-labelled PCR products by capillary electrophoresis eliminate the multiple step protocols required by SNP typing with single-base extension assays and provide a closer relationship between the input DNA and the profile peak height ratios. Therefore InDel genotyping represents an effective new approach for human identification that adds informative new loci to the existing battery of forensic markers. To assess the utility of InDels for forensic analysis, we characterised population variation with two InDel identification assays: the 30-plex Qiagen DIPplex panel and a 38-plex panel developed by Pereira et al. in 2009. Allele frequencies were generated for the 68 markers in US African American, Caucasian, East Asian and Hispanic samples. We made a thorough assessment of the individual and combined performance of the InDel sets, as well as characterising profile artifacts and other issues related to the routine use of these newly developed forensic assays based on artificially degraded DNA and mixed source samples.
    Deutsche Zeitschrift für die Gesamte Gerichtliche Medizin 06/2012; 126(5):725-37. · 2.69 Impact Factor