A Cryosectioning Procedure for the Ultrastructural Analysis and the Immunogold Labelling of Yeast Saccharomyces cerevisiae

Department of Cell Biology, University Medical Centre Utrecht, 3584 CX Utrecht, the Netherlands.
Traffic (Impact Factor: 4.71). 08/2008; 9(7):1060-72. DOI: 10.1111/j.1600-0854.2008.00753.x
Source: PubMed

ABSTRACT Yeast Saccharomyces cerevisiae has been a crucial model system for the study of a multitude of cellular processes because of its amenability to genetics, molecular biology and biochemical procedures. By contrast, the morphological analysis of this organism by immunoelectron microscopy (IEM) has remained in a primordial phase preventing researchers to routinely incorporate this technique into their investigations. Here, in addition to simple but detailed protocols to perform conventional electron microscopy (EM) on plastic embedded sections, we present a new IEM procedure adapted from the Tokuyasu method to prepare cryosections from mildly fixed cells. This novel approach allows an excellent cell preservation and the negatively stained membranes create superb contrast that leads to a unique resolution of the yeast morphology. This, plus the optimal preservation of the epitopes, permits combined localization studies with a fine resolution of protein complexes, vesicular carriers and organelles at an ultrastructural level. Importantly, we also show that this cryo-immunogold protocol can be combined with high-pressure freezing and therefore cryofixation can be employed if difficulties are encountered to immobilize a particular structure with chemical fixation. This new IEM technique will be a valuable tool for the large community of scientists using yeast as a model system, in particular for those studying membrane transport and dynamics.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a highly regulated pathway that selectively degrades cellular constituents such as protein aggregates and excessive or damaged organelles. This transport route is characterized by the engulfment of the targeted cargo by autophagosomes. The formation of these double-membrane vesicles requires the covalent conjugation of the ubiquitin-like protein Atg8 to phosphatidylethanolamine (PE). However, the origin of PE and the regulation of lipid flux required for autophagy remain poorly understood. Using a genetic screen, we found that the temperature-sensitive growth and intracellular membrane organization defects of mcd4-174 and mcd4-P301L mutants are suppressed by deletion of essential autophagy genes such as ATG1 or ATG7. MCD4 encodes an ethanolamine phosphate transferase, which uses PE as a precursor for an essential step in the synthesis of the glycosylphosphatidylinositol (GPI) anchor used to link a subset of plasma membrane proteins to lipid bilayers. Similar to the deletion of CHO2, a gene encoding the enzyme converting PE to phosphatidylcholine (PC), deletion of ATG7 was able to restore lipidation and plasma membrane localization of the GPI-anchored protein Gas1, and normal organization of intracellular membranes. Conversely, overexpression of Cho2 was lethal in mcd4-174 cells grown at restrictive temperature. Quantitative lipid analysis revealed that PE levels are substantially reduced in the mcd4-174 mutant, but can be restored by deletion of ATG7 or CHO2. Taken together, these data suggest that autophagy competes for a common PE pool with major cellular PE-consuming pathways such as the GPI-anchor and PC synthesis, highlighting the possible interplay between these pathways and the existence of signals that may coordinate PE flux. Copyright © 2014, The Genetics Society of America.
    Genetics 12/2014; DOI:10.1534/genetics.114.169797 · 4.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Macroautophagy (hereafter autophagy) is a highly evolutionarily conserved process essential for sustaining cellular integrity, homeostasis, and survival. Most eukaryotic cells constitutively undergo autophagy at a low basal level. However, various stimuli, including starvation, organelle deterioration, stress, and pathogen infection, potently upregulate autophagy. The hallmark morphological feature of autophagy is the formation of the double-membrane vesicle known as the autophagosome. In yeast, flux through the pathway culminates in autophagosome–vacuole fusion, and the subsequent degradation of the resulting autophagic bodies and cargo by vacuolar hydrolases, followed by efflux of the breakdown products. Importantly, aberrant autophagy is associated with diverse human pathologies. Thus, there is a need for ongoing work in this area to further understand the cellular factors regulating this process. The field of autophagy research has grown exponentially in recent years, and although numerous model organisms are being used to investigate autophagy, the baker’s yeast Saccharomyces cerevisiae remains highly relevant, as there are significant and unique benefits to working with this organism. In this review, we will focus on the current methods available to evaluate and monitor autophagy in S. cerevisiae, which in several cases have also been subsequently exploited in higher eukaryotes.
    Methods 12/2014; 75. DOI:10.1016/j.ymeth.2014.12.008 · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endosomes are dynamic organelles that need to combine the ability to successfully deliver proteins and lipids to the lysosome-like vacuole, and recycle others to the Golgi or the plasma membrane. We now show that retromer, implicated in retrieval of proteins from endosomes to the Golgi or to the plasma membrane, can act on vacuoles. We explore its function using an assay that allows us to dissect the required cofactors during recycling. We demonstrate that recycling of the transmembrane receptor Vps10 from vacuoles requires the retromer, the dynamin-like Vps1, and the Rab7 GTPase Ypt7. While retromer and Vps1 leave the vacuole together with the cargo, Ypt7 stays behind, in agreement with its regulatory function. Recycled cargo then accumulates at endosomes and later at the Golgi, implying consecutive sorting steps to the final destination. Our data further suggest that retromer and Vps1 are essential to maintain vacuole membrane organization. All together, our data demonstrate that retromer can cooperate with Vps1 and the Rab Ypt7 to clear the vacuole of selected membrane proteins.

Full-text (2 Sources)

Available from
Sep 25, 2014