Quantitative genetic analysis of sleep in Drosophila melanogaster.

Howard Hughes Medical Institute, Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Genetics (Impact Factor: 4.87). 05/2008; 178(4):2341-60. DOI: 10.1534/genetics.107.081232
Source: PubMed

ABSTRACT Although intensively studied, the biological purpose of sleep is not known. To identify candidate genes affecting sleep, we assayed 136 isogenic P-element insertion lines of Drosophila melanogaster. Since sleep has been negatively correlated with energy reserves across taxa, we measured energy stores (whole-body protein, glycogen, and triglycerides) in these lines as well. Twenty-one insertions with known effects on physiology, development, and behavior affect 24-hr sleep time. Thirty-two candidate insertions significantly impact energy stores. Mutational genetic correlations among sleep parameters revealed that the genetic basis of the transition between sleep and waking states in males and females may be different. Furthermore, sleep bout number can be decoupled from waking activity in males, but not in females. Significant genetic correlations are present between sleep phenotypes and glycogen stores in males, while sleep phenotypes are correlated with triglycerides in females. Differences observed in male and female sleep behavior in flies may therefore be related to sex-specific differences in metabolic needs. Sleep thus emerges as a complex trait that exhibits extensive pleiotropy and sex specificity. The large mutational target that we observed implicates genes functioning in a variety of biological processes, suggesting that sleep may serve a number of different functions rather than a single purpose.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flies mutant for the canonical clock protein cycle (cyc01) exhibit a sleep rebound that is ∼10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc01 mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc01 mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. Laboratory. Drosophila melanogaster. Sleep deprivation and starvation. We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc01 mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis. © 2014 Associated Professional Sleep Societies, LLC.
    Sleep 11/2014; · 5.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the genetic architecture of disease is an enormous challenge, and should be guided by evolutionary principles. Recent studies in evolutionary genetics show that sexual selection can have a profound influence on the genetic architecture of complex traits. Here, we summarise data from heritability studies and genome-wide association studies (GWASs) showing that common genetic variation influences many diseases and medically relevant traits in a sex-dependent manner. In addition, we discuss how the discovery of sex-dependent effects in population samples is improved by joint interaction analysis (rather than separate-sex), as well as by recently developed software. Finally, we argue that although genetic variation that has sex-dependent effects on disease risk could be maintained by mutation–selection balance and genetic drift, recent evidence indicates that intra-locus sexual conflict could be a powerful influence on complex trait architecture, and maintain sex-dependent disease risk alleles in a population because they are beneficial to the opposite sex.
    Trends in Genetics 10/2014; 30(10). DOI:10.1016/j.tig.2014.08.006 · 11.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drosophila has proven to be a powerful model to identify genes and circuits that impact sleep. While the majority of studies have primarily been interested in identifying manipulations that alter sleep time, a growing body of work has begun to focus on how changing sleep influences functional outcomes such as cognitive performance, structural plasticity, and metabolism to name a few. Evaluating sleep time provides an appropriate entry point into elucidating sleep function. However, it is not possible to fully understand how a manipulation has impacted sleep regulation without first establishing how it has affected the animals’ well-being. Synaptic plasticity and memory are important functional outcomes that can be used to asses an animal’s status. In this manuscript, we review recent advances in studies examining sleep, memory, and performance. We conclude that as Drosophila sleep researchers expand their analysis beyond sleep time, the opportunities to discover the function of sleep will be enhanced.
    03/2015; 1(1). DOI:10.1007/s40675-014-0006-4

Full-text (2 Sources)

Available from
Oct 7, 2014