Genomic location and characterisation of nonclassical MHC class I genes in cattle.

Immunology Division, Institute for Animal Health, Compton RG20 7NN, UK.
Immunogenetics (Impact Factor: 2.89). 06/2008; 60(5):267-73. DOI: 10.1007/s00251-008-0294-2
Source: PubMed

ABSTRACT The cattle major histocompatibility complex (MHC) region contains a variable number of classical class I genes encoding polymorphic, ubiquitously expressed molecules with a role in antigen presentation. Class I cDNA sequences have previously been reported that are thought to derive from putative nonclassical class I genes. We have located four nonclassical class I genes within the cattle genome; three are close to the MIC genes, and one is close to the classical class I genes. The genomic position relative to anchor genes is very similar to the arrangement reported in the pig MHC region. We have designed gene-specific oligonucleotide primers with which to investigate the presence of these genes in distinct and well-defined MHC haplotypes and to assess transcription in different cell types. Analysis and comparison of all sequences allows an assessment of allelic variation in each case. Partial characterisation gives an indication of the possible role and likely importance of each of these genes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The cattle major histocompatibility complex (MHC) region contains a variable number of classical class I genes encoding polymorphic molecules involved in antigen presentation. Six classical class I genes have been described, but assigning sequences to these genes has proved problematic. We propose a refinement of the existing nomenclature, which currently names the 97 known classical class I sequences in a single series. Phylogenetic analysis of the 3' portion of the coding region allows segregation of these into six groups; thus, we have prefixed existing names with the appropriate number. Although it is clear that some of these groups correspond to discrete genes, it is currently not possible to state definitively that all do. However, the main groupings are consistent, and in conjunction with other evidence, we feel it is now appropriate to rename the sequences accordingly. Segregation of sequences into groups in this way will facilitate ongoing research and future use of the cattle MHC section of the Immuno Polymorphism Database.
    Immunogenetics 03/2012; 64(6):475-80. · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our aim was to analyse the transcription levels of the three non-classical class Ib genes SLA-6, SLA-7 and SLA-8 of the swine major histocompatibility complex in various tissues and conditions and to compare them to the transcription levels of classical class Ia genes. Twenty-five adult tissues from two pig breeds, pig renal PK15 cells infected with the Pseudorabies virus, and peripheral blood mononuclear cells (PBMCs) stimulated by lipopolysaccharide or a mixture of phorbol myristate acetate and ionomycin were included in our study. Relative transcription was quantified by quantitative real-time PCR. On average, in adult tissues and PBMCs and compared to SLA-6, the transcription level of SLA-Ia genes was 100-1000 times higher, the level of SLA-8 was 10-20 times higher, and that of SLA-7 was five times higher. Thus, SLA-8 is the most transcribed SLA-Ib gene, followed by the SLA-7 and SLA-6 genes. The highest transcription levels of SLA-Ib transcripts were found in the lymphoid organs, followed by the lung and the digestive tract. The tissue variability of expression levels was widest for the SLA-6 gene, with a 1:32 ratio between the lowest and highest levels in contrast to a 1:12 ratio for the SLA-7 and SLA-8 genes and a 1:16 ratio for the SLA-Ia genes. During PK-15 infection and PBMC stimulation, SLA-Ia and SLA-8 genes were downregulated, whereas SLA-6 and SLA-7 were upregulated, downregulated or not significantly modified. Our overall results confirm the tissue-wide transcription of the three SLA-Ib genes and suggest that they have complementary roles.
    Animal Genetics 10/2011; 42(5):510-20. · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Six major histocompatibility complex (MHC) classical class I genes have been identified in cattle, and up to three of these are expressed in variable combinations on different haplotypes. The origin and functional significance of this genetic complexity is unknown. However, an improved assembly of the cattle genome, an expanded database of full-length cDNA sequences and high-resolution frequency data concerning expressed class I genes in an economically important cattle breed combine to provide a new opportunity to study the significance of cattle MHC class I diversity. Analysis of these new data supports assignment of alleles to six discrete genes and further shows that all these classical genes share a common ancestor with a single non-classical gene, NC1. While haplotype structure is variable, with thirteen gene configurations identified, there are nevertheless clear constraints relating to both the number and combination of genes. Haplotypes expressing two classical genes are most frequently observed, and the classical class I gene 2 is almost invariably present. The frequency data support the dominance of gene 2, showing that close to 100 % of individuals carry at least one copy. This indicates a hierarchy in the functional importance of particular genes and haplotype structures. Haplotype frequency in cattle populations is therefore likely to impact on differential disease susceptibilities. This knowledge will be important for development of informed breeding strategies aimed at increasing the ability of cattle to survive in the face of future unpredictable pathogen exposure.
    Immunogenetics 03/2012; 64(6):435-45. · 2.89 Impact Factor