Selection of T1249-resistant human immunodeficiency virus type 1 variants.

Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.
Journal of Virology (Impact Factor: 4.65). 08/2008; 82(13):6678-88. DOI: 10.1128/JVI.00352-08
Source: PubMed

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) entry is an attractive target for therapeutic intervention. Two drugs that inhibit this process have been approved: the fusion inhibitor T20 (enfuvirtide [Fuzeon]) and, more recently, the CCR5 blocker maraviroc (Selzentry). T1249 is a second-generation fusion inhibitor with improved antiviral potency compared to the first-generation peptide T20. We selected T1249-resistant HIV-1 variants in vitro by serial virus passage in the presence of increasing T1249 doses after passage with wild-type and T20-resistant variants. Sequence analysis revealed the acquisition of substitutions within the HR1 region of the gp41 ectodomain. The virus acquired mutations of residue V38 to either E or R in 10 of 19 cultures. Both E and R at position 38 were confirmed to cause resistance to T1249, as well as cross-resistance to T20 and C34, but not to the third-generation fusion inhibitor T2635. We also observed substitutions at residues 79 and 90 (Q79E and K90E), which provide modest resistance to T1249 and, interestingly, T2635. Thus, the gp41 amino acid position implicated in T20 resistance (V38 replaced by A, G, or W) is also responsible for T1249 resistance (V38 replaced by E, R, or K). These results indicate that T20 and T1249 exhibit very similar inhibition modes that call for similar but not identical resistance mutations. All T1249-resistant viruses with changes at position 38 are cross resistant to T20, but not vice versa. Furthermore, substitutions at position 38 do not provide resistance to the third-generation inhibitor T2635, while substitution at positions 79 and 90 do, suggesting different resistance mechanisms.

Download full-text


Available from: Ben Berkhout, Jun 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small molecule inhibition of HIV fusion has been an elusive goal, despite years of effort by both pharmaceutical and academic laboratories. In this review, we will discuss the amphipathic properties of both peptide and small molecule inhibitors of gp41-mediated fusion. Many of the peptides and small molecules that have been developed target a large hydrophobic pocket situated within the grooves of the coiled coil, a potential hotspot for inhibiting the trimer of hairpin formation that accompanies fusion. Peptide studies reveal molecular properties required for effective inhibition, including elongated structure and lipophilic or amphiphilic nature. The characteristics of peptides that bind in this pocket provide features that should be considered in small molecule development. Additionally, a novel site for small molecule inhibition of fusion has recently been suggested, involving residues of the loop and fusion peptide. We will review the small molecule structures that have been developed, evidence pointing to their mechanism of action and strategies towards improving their affinity. The data points to the need for a strongly amphiphilic character of the inhibitors, possibly as a means to mediate the membrane - protein interaction that occurs in gp41 in addition to the protein - protein interaction that accompanies the fusion-activating conformational transition.
    Current topics in medicinal chemistry 10/2011; 11(24):3022-32. DOI:10.2174/156802611798808488 · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Griffithsin (GRFT) is possibly the most potent anti-HIV peptide found in natural sources. Due to its potent and broad-spectrum antiviral activity and unique safety profile it has great potential as topical microbicide component. Here, we evaluated various combinations of GRFT against HIV-1 clade B and clade C isolates in primary peripheral blood mononuclear cells (PBMCs) and in CD4(+) MT-4 cells. In all combinations tested, GRFT showed synergistic activity profile with tenofovir, maraviroc and enfuvirtide based on the median effect principle with combination indices (CI) varying between 0.34 and 0.79 at the calculated EC(95) level. Furthermore, the different glycosylation patterns on the viral envelope of clade B and clade C gp120 had no observable effect on the synergistic interactions. Overall, we can conclude that the evaluated two-drug combination increases their antiviral potency and supports further clinical investigations in pre-exposure prophylaxis for GRFT combinations in the context of HIV-1 clade C infection.
    Virology 07/2011; 417(2):253-8. DOI:10.1016/j.virol.2011.07.004 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations that are selected at low frequency and/or reside outside the enfuvirtide target region, amino acid 36-45 of gp41, might still be important determinants for drug resistance. This study aimed to investigate the phenotypic impact against enfuvirtide and sifuvirtide of uncharacterized gp41 mutations 42G, 43T and 50V, selected in patients failing enfuvirtide-containing regimens. As single mutations, neither 42G, 43T nor 50V conferred resistance to enfuvirtide. However, 50V increased slightly resistance levels for 36D, 38M, 43D or 43T as did 43T for 38M. All mutants displayed a reduced replication capacity, except 42S, 50V and 36D+/-50V. None of the mutants displayed resistance to the next-generation fusion inhibitor sifuvirtide. This study highlights the necessity to confirm the in vitro effect of infrequently selected mutations as 42G was not associated with enfuvirtide resistance whereas 43T and 50V should be considered as secondary enfuvirtide resistance mutations.
    Antiviral research 03/2010; 86(3):253-60. DOI:10.1016/j.antiviral.2010.03.003 · 3.43 Impact Factor