The Salmonella Typhi hlyE gene plays a role in invasion of cultured epithelial cells and its functional transfer to S. Typhimurium promotes deep organ infection in mice.

Programa de Doctorado en Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
Research in Microbiology (Impact Factor: 2.83). 06/2008; 159(4):279-87. DOI: 10.1016/j.resmic.2008.02.006
Source: PubMed

ABSTRACT Comparison of genome sequences of Salmonella enterica serovars Typhi and Typhimurium reveals that S. Typhi has a small 2.3kb genomic island missing in S. Typhimurium, designated Salmonella pathogenicity island 18 (SPI-18), which includes two potential genes. One of these, hlyE, encodes a hemolysin related to the Escherichia coli K12 HlyE hemolysin. PCR assays show that SPI-18 is present in S. Typhi and in many other, but not all, serovars of S. enterica subsp. enterica belonging to the SARB collection. HlyE activity cannot be detected in S. Typhi by means of standard plate assays. Nevertheless, we were able to reveal this activity upon lysis of bacterial cells with phages, in the presence of ampicillin, and in a ompA genetic background, conditions that compromise the integrity of the bacterial envelope. Almost all serovars of the SARB collection shown to cause systemic infections in humans have SPI-18 and hlyE and express an active hemolysin revealed upon bacterial envelope destabilization. S. Typhi hlyE mutants are impaired in invasion of human epithelial cells in vitro, and its heterologous expression in S. Typhimurium improves the colonization of deep organs in mice, demonstrating that the HlyE hemolysin is a new virulence determinant.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salmonella enterica serovar Typhi (S. Typhi) is a human-specific pathogen that causes typhoid fever. In this study, we constructed ΔygaE mutant and a microarray was performed to investigate the role of ygaE in regulation of gene expression changes in response to hyperosmotic stress in S. Typhi. qRT-PCR was performed to validate the microarray results. Our data indicated that ygaE was the repressor of gab operon in S. Typhi as in Escherichia coli (E. coli), though the sequence of ygaE is totally different from gabC (formerly ygaE) in E. coli. OmpF, OmpC, and OmpA are the most abundant out membrane proteins in S. Typhi. Here we report that YgaE is a repressor of both OmpF and OmpC at the early stage of hyperosmotic stress. Two-dimensional electrophoresis was applied to analyze proteomics of total proteins in wild-type strain and ΔygaE strain and we found that YgaE represses the expression of OmpA at the late stage of hyperosmotic stress. Altogether, our results implied that YgaE regulates out membrane proteins in a time-dependent manner under hyperosmotic stress in S. Typhi.
    The Scientific World Journal 01/2014; 2014:374276. · 1.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SPI-18 is a pathogenicity island found in some Salmonella enterica serovars, including S. Typhi. SPI-18 harbors two ORFs organized into an operon, hlyE and taiA genes, both implicated in virulence. Regarding the hlyE regulation in S. Typhi, it has been reported that RpoS participates as transcriptional up-regulator under low pH and high osmolarity. In addition, CRP down-regulates hlyE expression during exponential growth. Previously, it has been suggested that there is another factor related to catabolite repression, different from CRP, involved in the down-regulation of hlyE. Moreover, PhoP-dependent hlyE up-regulation has been reported in bacteria cultured simultaneously under low pH and low concentration of Mg2+. Nevertheless, the relative contribution of each environmental signal is not completely clear. In this work we aimed to better understand the regulation of hlyE in S. Typhi and the integration of different environmental signals through global regulators.
    BMC Microbiology 05/2014; 14(1):139. · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the draft genome sequence of Salmonella enterica serovar Typhi strain STH2370, isolated from a typhoid fever patient in Santiago, Chile. This clinical isolate has been used as the reference wild-type strain in numerous studies conducted in our laboratories during the last 15 years.
    Genome Announcements 02/2014; 2(1).


Available from
Jul 11, 2014