Macrophage mannose receptor on lymphatics controls cell trafficking

MediCity Research Laboratory and Department of Medical Microbiology, Turku University and National Public Health Institute, Turku, Finland.
Blood (Impact Factor: 10.45). 08/2008; 112(1):64-72. DOI: 10.1182/blood-2007-10-118984
Source: PubMed


Macrophage mannose receptor (MR) participates in pathogen recognition, clearance of endogenous serum glycoproteins, and antigen presentation. MR is also present on lymphatic vessels, where its function is unknown. Here we show that migration of lymphocytes from the skin into the draining lymph nodes through the afferent lymphatics is reduced in MR-deficient mice, while the structure of lymphatic vasculature remains normal in these animals. Moreover, in a tumor model the primary tumors grow significantly bigger in MR(-/-) mice than in the wild-type (WT) controls, whereas the regional lymph node metastases are markedly smaller. Adhesion of both normal lymphocytes and tumor cells to lymphatic vessels is significantly decreased in MR-deficient mice. The ability of macrophages to present tumor antigens is indistinguishable between the 2 genotypes. Thus, MR on lymphatic endothelial cells is involved in leukocyte trafficking and contributes to the metastatic behavior of cancer cells. Blocking of MR may provide a new approach to controlling inflammation and cancer metastasis by targeting the lymphatic vasculature.


Available from: Mari S Lehti
  • Source
    • "However, a recent study revealed that CD62L+CD56dim PBNK cells exhibit the full functional repertoire of NK cell cytokine production and cytotoxicity and are likely also representing an intermediate stage of NK cell differentiation towards fully cytotoxic CD56dimCD62L− NK cells [38]. CD62L is an important receptor guiding NK cells in and out of lymph nodes through interactions with ligands on high endothelial venules and, e.g. by binding to the ligand mannose receptor (MMR), along afferent and efferent lymphatic endothelium [39], [40]. Furthermore, CD62L also mediates rolling of leukocytes on activated endothelium for extravasation into inflamed tissue [41], [42]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The possibility to modulate ex vivo human NK cell differentiation towards specific phenotypes will contribute to a better understanding of NK cell differentiation and facilitate tailored production of NK cells for immunotherapy. In this study, we show that addition of a specific low dose of IL-12 to an ex vivo NK cell differentiation system from cord blood CD34(+) stem cells will result in significantly increased proportions of cells with expression of CD62L as well as KIRs and CD16 which are preferentially expressed on mature CD56(dim) peripheral blood NK cells. In addition, the cells displayed decreased expression of receptors such as CCR6 and CXCR3, which are typically expressed to a lower extent by CD56(dim) than CD56(bright) peripheral blood NK cells. The increased number of CD62L and KIR positive cells prevailed in a population of CD33(+)NKG2A(+) NK cells, supporting that maturation occurs via this subtype. Among a series of transcription factors tested we found Gata3 and TOX to be significantly downregulated, whereas ID3 was upregulated in the IL-12-modulated ex vivo NK cells, implicating these factors in the observed changes. Importantly, the cells differentiated in the presence of IL-12 showed enhanced cytokine production and cytolytic activity against MHC class I negative and positive targets. Moreover, in line with the enhanced CD16 expression, these cells exhibited improved antibody-dependent cellular cytotoxicity for B-cell leukemia target cells in the presence of the clinically applied antibody rituximab. Altogether, these data provide evidence that IL-12 directs human ex vivo NK cell differentiation towards more mature NK cells with improved properties for potential cancer therapies.
    PLoS ONE 01/2014; 9(1):e87131. DOI:10.1371/journal.pone.0087131 · 3.23 Impact Factor
  • Source
    • "These cells were a gift from Prof. Granucci and were cultured as described in [16] and injected (5 x 106 per mouse) subcutaneously (s.c.) in the right shoulders of wild type (Ncf1+/+) and Ncf1m1J mutated (Ncf1*/*) mice. The experiments using luciferase expressing B16-F10-luc-G5 cells (briefly B16-luc) (Xenogen) were performed as described in [13] and in vivo imaged as described in [17]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The NADPH oxidase 2 (NOX2) complex is a professional producer of reactive oxygen species (ROS) and is mainly expressed in phagocytes. While the activity of the NOX2 complex is essential for immunity against pathogens and protection against autoimmunity, its role in the development of malignant tumors remains unclear. We compared wild type and Ncf1 (m1J) mutated mice, which lack functional NOX2 complex, in four different tumor models. Ncf1 (m1J) mutated mice developed significantly smaller tumors in two melanoma models in which B16 melanoma cells expressing a hematopoietic growth factor FLT3L or luciferase reporter were used. Ncf1 (m1J) mutated mice developed significantly fewer Lewis Lung Carcinoma (LLC) tumors, but the tumors that did develop, grew at a pace that was similar to the wild type mice. In the spontaneously arising prostate carcinoma model (TRAMP), tumor growth was not affected. The lack of ROS-mediated protection against tumor growth was associated with increased production of immunity-associated cytokines. A significant increase in Th2 associated cytokines was observed in the LLC model. Our present data show that ROS regulate rejection of the antigenic B16-luc and LLC tumors, whereas the data do not support a role for ROS in growth of intrinsically generated tumors.
    PLoS ONE 12/2013; 8(12):e84148. DOI:10.1371/journal.pone.0084148 · 3.23 Impact Factor
  • Source
    • "The expression of the mannose receptor has also been described on LEC of both afferent and efferent LVs and evidence of impaired migration to LNs of DC lacking its expression has been published (113, 129). Still, its importance in vivo has only been shown in lymphatic sinuses inside LNs, where the absence of MR impairs lymphocyte adhesion (130). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue drains fluid and macromolecules through lymphatic vessels (LVs), which are lined by a specialized endothelium that expresses peculiar differentiation proteins, not found in blood vessels (i.e., LYVE-1, Podoplanin, PROX-1, and VEGFR-3). Lymphatic capillaries are characteristically devoid of a continuous basal membrane and are anchored to the ECM by elastic fibers that act as pulling ropes which open the vessel to avoid edema if tissue volume increases, as it occurs upon inflammation. LVs are also crucial for the transit of T lymphocytes and antigen presenting cells from tissue to draining lymph nodes (LN). Importantly, cell traffic control across lymphatic endothelium is differently regulated under resting and inflammatory conditions. Under steady-state non-inflammatory conditions, leukocytes enter into the lymphatic capillaries through basal membrane gaps (portals). This entrance is integrin-independent and seems to be mainly guided by CCL21 chemokine gradients acting on leukocytes expressing CCR7. In contrast, inflammatory processes in lymphatic capillaries involve a plethora of cytokines, chemokines, leukocyte integrins, and other adhesion molecules. Importantly, under inflammation a role for integrins and their ligands becomes apparent and, as a consequence, the number of leukocytes entering the lymphatic capillaries multiplies several-fold. Enhancing transmigration of dendritic cells en route to LN is conceivably useful for vaccination and cancer immunotherapy, whereas interference with such key mechanisms may ameliorate autoimmunity or excessive inflammation. Recent findings illustrate how, transient cell-to-cell interactions between lymphatic endothelial cells and leukocytes contribute to shape the subsequent behavior of leukocytes and condition the LV for subsequent trans-migratory events.
    Frontiers in Immunology 12/2013; 4:433. DOI:10.3389/fimmu.2013.00433
Show more