Article

A luteinizing hormone receptor intronic variant is significantly associated with decreased risk of Alzheimer's disease in males carrying an apolipoprotein E ε4 allele

Section of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
BMC Medical Genetics (Impact Factor: 2.45). 02/2008; 9:37. DOI: 10.1186/1471-2350-9-37
Source: DOAJ

ABSTRACT Genetic and biochemical studies support the apolipoprotein E (APOE) epsilon4 allele as a major risk factor for late-onset Alzheimer's disease (AD), though ~50% of AD patients do not carry the allele. APOE transports cholesterol for luteinizing hormone (LH)-regulated steroidogenesis, and both LH and neurosteroids have been implicated in the etiology of AD. Since polymorphisms of LH beta-subunit (LHB) and its receptor (LHCGR) have not been tested for their association with AD, we scored AD and age-matched control samples for APOE genotype and 14 polymorphisms of LHB and LHCGR. Thirteen gene-gene interactions between the loci of LHB, LHCGR, and APOE were associated with AD. The most strongly supported of these interactions was between an LHCGR intronic polymorphism (rs4073366; lhcgr2) and APOE in males, which was detected using all three interaction analyses: linkage disequilibrium, multi-dimensionality reduction, and logistic regression. While the APOE epsilon4 allele carried significant risk of AD in males [p = 0.007, odds ratio (OR) = 3.08(95%confidence interval: 1.37, 6.91)], epsilon4-positive males carrying 1 or 2 C-alleles at lhcgr2 exhibited significantly decreased risk of AD [OR = 0.06(0.01, 0.38); p = 0.003]. This suggests that the lhcgr2 C-allele or a closely linked locus greatly reduces the risk of AD in males carrying an APOE epsilon4 allele. The reversal of risk embodied in this interaction powerfully supports the importance of considering the role gene-gene interactions play in the etiology of complex biological diseases and demonstrates the importance of using multiple analytic methods to detect well-supported gene-gene interactions.

Download full-text

Full-text

Available from: Craig S Atwood, Jul 28, 2015
0 Followers
 · 
167 Views
  • Source
    • "Although this can work better than using a single variable on its own, strategies of this kind usually fall well short of the outcomes that can be achieved using approaches based on combinatorial optimization of particular sets of entities or features, which also take into account interrelationships between different entities. Such non-statistical approaches are already proving useful in related areas, such as investigations of interactions between multiple genetic risk factors for AD, depression, and other conditions [16] [17] [18]. One of the reasons for this is already well recognized in the AD field, namely that single variate measures are generally outperformed by multimodal approaches that combine genomics, proteomics, metabolomics, or other molecular investigations with information from different sources, for example cognitive test scores, imaging, or demographic factors such as gender, age, and education level [9] [13] [15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Interventions to delay or slow Alzheimer's disease (AD) progression are most effective when implemented at pre-clinical disease stages, making early diagnosis essential. For this reason, there is an increasing focus on discovery of predictive biomarkers for AD. Currently, the most reliable predictive biomarkers require either expensive (brain imaging) or invasive (cerebrospinal fluid collection) procedures, leading researchers to strive toward identifying robust biomarkers in blood. Yet promising early results from candidate blood biomarker studies are being refuted by subsequent findings in other cohorts or using different assay technologies. Recent evidence suggests that univariate blood biomarkers are not sufficiently sensitive or specific for the diagnosis of disorders as complex, multifactorial, and heterogeneous as AD. To overcome these present limitations, more consideration must be given to the development of 'biomarker panels' assessing multiple molecular entities. The selection of such panels should draw not only on traditional statistical approaches, whether parametric or non-parametric, but also on newer non-statistical approaches that have the capacity to retain and utilize information about all individual study participants rather than collapsing individual data into group summary values (e.g., mean, variance). These new approaches, facilitated by advances in computing, have the potential to preserve the context of interrelationships between different molecular entities, making them amenable to the development of panels that, as a multivariate collective, can overcome the challenge of individual variability and disease heterogeneity to accurately predict and classify AD. We argue that the AD research community should take fuller advantage of these approaches to accelerate discovery.
    Journal of Alzheimer's disease: JAD 10/2013; 39(1). DOI:10.3233/JAD-131424 · 4.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene microarray technology is an effective tool to investigate the simultaneous activity of multiple cellular pathways from hundreds to thousands of genes. However, because data in the colossal amounts generated by DNA microarray technology are usually complex, noisy, high-dimensional, and often hindered by low statistical power, their exploitation is difficult. To overcome these problems, two kinds of unsupervised analysis methods for microarray data: principal component analysis (PCA) and independent component analysis (ICA) have been developed to accomplish the task. PCA projects the data into a new space spanned by the principal components that are mutually orthonormal to each other. The constraint of mutual orthogonality and second-order statistics technique within PCA algorithms, however, may not be applied to the biological systems studied. Extracting and characterizing the most informative features of the biological signals, however, require higher-order statistics. ICA is one of the unsupervised algorithms that can extract higher-order statistical structures from data and has been applied to DNA microarray gene expression data analysis. We performed FastICA method on DNA microarray gene expression data from Alzheimer's disease (AD) hippocampal tissue samples and consequential gene clustering. Experimental results showed that the ICA method can improve the clustering results of AD samples and identify significant genes. More than 50 significant genes with high expression levels in severe AD were extracted, representing immunity-related protein, metal-related protein, membrane protein, lipoprotein, neuropeptide, cytoskeleton protein, cellular binding protein, and ribosomal protein. Within the aforementioned categories, our method also found 37 significant genes with low expression levels. Moreover, it is worth noting that some oncogenes and phosphorylation-related proteins are expressed in low levels. In comparison to the PCA and support vector machine recursive feature elimination (SVM-RFE) methods, which are widely used in microarray data analysis, ICA can identify more AD-related genes. Furthermore, we have validated and identified many genes that are associated with AD pathogenesis. We demonstrated that ICA exploits higher-order statistics to identify gene expression profiles as linear combinations of elementary expression patterns that lead to the construction of potential AD-related pathogenic pathways. Our computing results also validated that the ICA model outperformed PCA and the SVM-RFE method. This report shows that ICA as a microarray data analysis tool can help us to elucidate the molecular taxonomy of AD and other multifactorial and polygenic complex diseases.
    Molecular Neurodegeneration 02/2009; 4:5. DOI:10.1186/1750-1326-4-5 · 5.29 Impact Factor
Show more