Differential regulation by AT(1) and AT(2) receptors of angiotensin II-stimulated cyclic GMP production in rat uterine artery and aorta.

Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
British Journal of Pharmacology (Impact Factor: 4.99). 04/2004; 141(6):1024-31. DOI: 10.1038/sj.bjp.0705694
Source: PubMed

ABSTRACT 1. In the present study we determined whether angiotensin II (Ang II) could increase cyclic GMP levels in two blood vessels that exhibit markedly different angiotensin II receptor subtype expression: rat uterine artery (UA; AT(2) receptor-predominant) and aorta (AT(1) receptor-predominant), and investigated the receptor subtype(s) and intracellular pathways involved. 2. UA and aorta were treated with Ang II in the absence and presence of losartan (AT(1) antagonist; 0.1 microm), PD 123319 (AT(2) antagonist; 1 microm), NOLA (NOS inhibitor; 30 microm), and HOE 140 (B(2) antagonist; 0.1 microm), or in combination. 3. Ang II (10 nm) induced a 60% increase in UA cyclic GMP content; an effect that was augmented with PD 123319 and HOE 140 pretreatment, and abolished by cotreatment with losartan, as well as by NOLA. 4. In aorta, Ang II produced concentration-dependent increases in cyclic GMP levels. Unlike effects in UA, these responses were abolished by PD 123319 and by NOLA, whereas losartan and HOE 140 caused partial inhibition. 5. Thus, in rat UA, Ang II stimulates cyclic GMP production through AT(1) and, to a less extent, AT(2) receptors. In rat aorta, the Ang II-mediated increase in cyclic GMP production is predominantly AT(2) receptor-mediated. In both preparations, NO plays a critical role in mediating the effect of Ang II, whereas bradykinin has differential roles in the two vessels. In UA, B(2) receptor blockade may result in a compensatory increase in cyclic GMP production, whilst in aorta, bradykinin accounts for approximately half of the cyclic GMP produced in response to Ang II.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we have demonstrated that 13-cis retinoic acid (13cRA) down-regulates rat angiotensin type 1A receptor (AT1AR) gene transcription through a MAP Kinase (ERK1/2) dependent mechanism in rat liver epithelial and aortic smooth muscle cells. However, the exact mechanism remained unknown. In this study, we determined the signaling intermediates activated by ERK1/2 involved in 13cRA mediated AT1AR down-regulation. Serially deleted rat AT1AR promoter CAT constructs indicate fragments containing a region -2541 and -1836 bp upstream of the 5 prime possess an Sp1 consensus sequence (5'-TGGGGCGGGGCGGGG-3') have reduced CAT activity. Mobility shift analysis using untreated nuclear extracts in the presence of mithramycin A suggest the trans-acting factor binding to this cis-acting element is Sp1. 13cRA significantly reduced specific binding without any change in Sp1 protein expression. Studies showed 13cRA maximally phosphorylates and tranlocates to the nucleus ERK1/2 within 5-10 minutes, activating Egr-1 mRNA expression at 20 minutes followed by de novo protein synthesis, leading to an Egr-1/Sp1 interaction. siRNA silencing of Egr-1 restored AT1AR mRNA and protein expression in 13cRA treated cells, and Sp1 silencing results in complete loss of AT1AR expression. Our study suggests that 13cRA mediated activation of ERK1/2, through Egr-1, is capable of disrupting Sp1, the requisite transactivator for AT1AR expression, providing a novel paradigm in AT1AR gene transcription.
    Journal of Molecular Endocrinology 03/2013; DOI:10.1530/JME-12-0154 · 3.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whether gestational protein restriction affects the renin-angiotensin system (RAS) in uterine artery remains unknown. In this study, we hypothesized that gestational protein restriction alters the expression of RAS components in uterine artery. In study one, time-scheduled pregnant Sprague Dawley rats were fed a normal or low-protein (LP) diet from Day 3 of pregnancy until they were killed at Days 19 and 22. The uterine arteries were collected and used for gene expression of Ace, Ace2, Agtr1a, Agtr1b, Agtr2, Esr1, and Esr2 by quantitative real-time PCR and/or Western blotting. LP increased plasma levels of angiotensin II in pregnant rats. In the uterine artery, the expressions of Agtr1a, Agtr1b, and Esr1 were increased by LP at Days 19 and 22 of pregnancy, whereas the abundance of AGTR1 and AGTR2 was increased by LP at Day 19 of pregnancy. The expression of Ace2 was not detectable in rat uterine artery. In study two, virgin female rats were ovariectomized and implanted with either 17beta-estradiol (E2), progesterone (P4), both E2 and P4, or placebo pellets until they were killed 7 days later. In rat uterine artery, E2 and P4 reduced the expression of Agtr1a, and E2 increased the expression of Agtr1b and Agtr2, but neither E2 nor P4 regulated the expression of Ace. These results indicate that gestational protein restriction induces an increase in Agtr1 expression in uterine artery, and thus may exacerbate the vasoconstriction to elevated angiotensin II present in maternal circulation, and that female sex hormones also play a role in this process.
    Biology of Reproduction 11/2011; 86(3):68. DOI:10.1095/biolreprod.111.095844 · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: British Journal of Pharmacology (2003) 140, 809–824. doi:10.1038/sj.bjp.0705448
    British Journal of Pharmacology 12/2003; 140(5):809-24. DOI:10.1038/sj.bjp.0705448 · 4.99 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014