Salmonella enterica requires ApbC function for growth on tricarballylate: evidence of functional redundancy between ApbC and IscU.

Department of Bacteriology, 1550 Linden Drive, University of Wisconsin, Madison, WI 53706, USA.
Journal of bacteriology (Impact Factor: 2.69). 08/2008; 190(13):4596-602. DOI: 10.1128/JB.00262-08
Source: PubMed

ABSTRACT Mutants of Salmonella enterica lacking apbC have nutritional and biochemical properties indicative of defects in [Fe-S] cluster metabolism. Here we show that apbC is required for S. enterica to use tricarballylate as a carbon and energy source. Tricarballylate catabolism requires three gene products, TcuA, TcuB, and TcuC. Of relevance to this work is the TcuB protein, which has two [4Fe-4S] clusters required for function, making it a logical target for the apbC effect. TcuB activity was 100-fold lower in an apbC mutant than in the isogenic apbC(+) strain. Genetic data show that derepression of the iscRSUA-hscAB-fdx-orf3 operon or overexpression of iscU from a plasmid compensates for the lack of ApbC during growth on tricarballylate. The studies described herein provide evidence that the scaffold protein IscU has a functional overlap with ApbC and that ApbC function is involved in the synthesis of active TcuB.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed a technique of generating nonthermal atmospheric plasma-activated solution that had broad-spectrum antibacterial properties. Plasma-activated phosphate-buffered saline (PBS) causes rapid inactivation of bacteria following generation oxidative stress. However, dose optimization requires understanding of cellular mechanisms. The objective of this study was to explore genome-wise response to develop gene expression profile of Escherichia coli using DNA microarray following exposure to plasma-activated PBS solution. Upon exposure to plasma-treated PBS solution, E. coli cells had differentially expressed genes involved in oxidative stress, and cell envelope and membrane associated porin and transporters. The genes involved in house-keeping and metabolism, energy generation, motility and virulence were conversely downregulated. This is the first report which demonstrates a severe oxidative stress induced in E. coli cells in response to an exposure to nonequilibrium nonthermal dielectric-barrier discharge plasma-activated PBS solution, and the genes that are responsive to reactive oxygen species appeared to play a role in cellular stress. Such studies are important to identify targets of inactivation, and to understand plasma-treated solution and bacterial cell interactions.
    Advances in Bioscience and Biotechnology 01/2015; 6(2):49-62. DOI:10.4236/abb.2015.62006
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iron/sulfur centers are key cofactors of proteins intervening in multiple conserved cellular processes, such as gene expression, DNA repair, RNA modification, central metabolism and respiration. Mechanisms allowing Fe/S centers to be assembled, and inserted into polypeptides have attracted much attention in the last decade, both in eukaryotes and prokaryotes. Basic principles and recent advances in our understanding of the prokaryotic Fe/S biogenesis ISC and SUF systems are reviewed in the present communication. Most studies covered stem from investigations in Escherichia coli and Azotobacter vinelandii. Remarkable insights were brought about by complementary structural, spectroscopic, biochemical and genetic studies. Highlights of the recent years include scaffold mediated assembly of Fe/S cluster, A-type carriers mediated delivery of clusters and regulatory control of Fe/S homeostasis via a set of interconnected genetic regulatory circuits. Also, the importance of Fe/S biosynthesis systems in mediating soft metal toxicity was documented. A brief account of the Fe/S biosynthesis systems diversity as present in current databases is given here. Moreover, Fe/S biosynthesis factors have themselves been the object of molecular tailoring during evolution and some examples are discussed here. An effort was made to provide, based on the E. coli system, a general classification associating a given domain with a given function such as to help next search and annotation of genomes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
    Biochimica et Biophysica Acta 05/2013; 1827(8-9). DOI:10.1016/j.bbabio.2013.05.001 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Enterobacteriaceae diversified from an ancestral lineage ~300-500 million years ago (mya) into a wide variety of free-living and host-associated lifestyles. Nutrient availability varies across niches, and evolution of metabolic networks likely played a key role in adaptation. Results Here we use a paleo systems biology approach to reconstruct and model metabolic networks of ancestral nodes of the enterobacteria phylogeny to investigate metabolism of ancient microorganisms and evolution of the networks. Specifically, we identified orthologous genes across genomes of 72 free-living enterobacteria (16 genera), and constructed core metabolic networks capturing conserved components for ancestral lineages leading to E. coli/Shigella (~10 mya), E. coli/Shigella/Salmonella (~100 mya), and all enterobacteria (~300-500 mya). Using these models we analyzed the capacity for carbon, nitrogen, phosphorous, sulfur, and iron utilization in aerobic and anaerobic conditions, identified conserved and differentiating catabolic phenotypes, and validated predictions by comparison to experimental data from extant organisms. Conclusions This is a novel approach using quantitative ancestral models to study metabolic network evolution and may be useful for identification of new targets to control infectious diseases caused by enterobacteria.
    BMC Systems Biology 06/2013; 7(1):46. DOI:10.1186/1752-0509-7-46 · 2.85 Impact Factor


Available from