Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides.

Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
Journal of Molecular Biology (Impact Factor: 3.91). 06/2008; 379(1):38-50. DOI: 10.1016/j.jmb.2008.03.047
Source: PubMed

ABSTRACT Flexible sequence-random polymers containing cationic and lipophilic subunits that act as functional mimics of host-defense peptides have recently been reported. We used bacteria and lipid vesicles to study one such polymer, having an average length of 21 residues, that is active against both Gram-positive and Gram-negative bacteria. At low concentrations, this polymer is able to permeabilize model anionic membranes that mimic the lipid composition of Escherichia coli, Staphylococcus aureus, or Bacillus subtilis but is ineffective against model zwitterionic membranes, which explains its low hemolytic activity. The polymer is capable of binding to negatively charged vesicles, inducing segregation of anionic lipids. The appearance of anionic lipid-rich domains results in formation of phase-boundary defects through which leakage can occur. We had earlier proposed such a mechanism of membrane disruption for another antimicrobial agent. Experiments with the mutant E. coli ML-35p indicate that permeabilization is biphasic: at low concentrations, the polymer permeabilizes the outer and inner membranes; at higher polymer concentrations, permeabilization of the outer membrane is progressively diminished, while the inner membrane remains unaffected. Experiments with wild-type E. coli K12 show that the polymer blocks passage of solutes into the intermembrane space at high concentrations. Cell membrane integrity in E. coli K12 and S. aureus exhibits biphasic dependence on polymer concentration. Isothermal titration calorimetry indicates that the polymer associates with the negatively charged lipopolysaccharide of Gram-negative bacteria and with the lipoteichoic acid of Gram-positive bacteria. We propose that this polymer has two mechanisms of antibacterial action, one predominating at low concentrations of polymer and the other predominating at high concentrations.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Antimicrobial peptides (AMPs) are multifunctional compounds that may show antimicrobial and immunomodulatory activities. With the rapid increase in the incidence of multidrug-resistant bacteria, there is an enormous interest in AMPs as templates for the production of new antibiotics. However, there are concerns that the therapeutic administration of AMPs can select resistant strains. In order to distinguish between resistant and non-resistant strains and verify resistance specificity to AMPs, in this study a magainin I-resistant Escherichia coli model was used. First, the identity of all strains was confirmed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF)-MS, VITEK 2 and MicroScan, and the susceptible and magainin-resistant strains were successfully differentiated by MALDI-TOF-MS analysis. Furthermore, cross-resistances to a broad spectrum of antibiotics were evaluated, showing that all E. coli strains are susceptible to the drugs tested, suggesting that the resistance seems to be specific to AMPs. Finally, the specific resistance to magainin I compared with other AMPs was checked by microdilution. This experiment showed that the magainin MICs were 62 and 104 μM for susceptible and resistant strains, respectively. The other AMPs MICs were 3.4 μM to proline-arginine-rich 39-amino-acid peptide, 43 μM to porcine myeloid antimicrobial 23-amino-acid peptide-23 and 1.2 μM to cecropin P1 for all strains, demonstrating any additional resistance to peptides here evaluated, confirming that the resistance seems to be essentially specific to magainin I. In summary, the data reported here reinforce the proposal that magainin I seems not to be merely a membrane disruptor, probably showing additional molecular targets in pathogenic bacteria.The Journal of Antibiotics advance online publication, 7 May 2014; doi:10.1038/ja.2014.48.
    The Journal of Antibiotics 05/2014; · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration-dependent mechanism of action: at low concentrations permeation and DNA-binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs.
    Biochimica et Biophysica Acta 04/2014; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antimicrobial peptides (AMPs) are promising leads for novel antibiotics; however, their activity is often compromised under physiological conditions. The purpose of this study was to determine the activity of α-peptide/β-peptoid peptidomimetics and AMPs against Escherichia coli and Staphylococcus aureus in the presence of human blood-derived matrices and immune effectors. The minimum inhibitory concentration (MIC) of two peptidomimetics against E.coli decreased by up to one order of magnitude when determined in 50% blood plasma as compared to MHB media. The MIC of a membrane-active AMP, LL-I/3 also decreased, whereas two intracellularly acting AMPs were not potentiated by plasma. Blood serum had no effect on activity against E. coli and neither matrix had an effect on activity against S. aureus. Unexpectedly, physiological concentrations of human serum albumin did not influence activity. Plasma potentiation was not caused by an LL-37 analogue, lysozyme or hydrogen peroxide; however, plasma potentiation of activity was abolished when the complement system was heat-inactivated. Time-course experiments indicated that potentiation was due to plasma-mediated effects on bacterial cells prior to activities of peptidomimetics. The unexpected enhancement of antibacterial activity of peptidomimetics and AMPs under physiological conditions significantly increases the therapeutic potential of these compounds.
    Research in Microbiology 08/2013; · 2.89 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014