Optimality analysis of Th1/Th2 immune responses during microparasite-macroparasite co-infection, with epidemiological feedbacks

School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.
Parasitology (Impact Factor: 2.35). 07/2008; 135(7):841-53. DOI: 10.1017/S0031182008000310
Source: PubMed

ABSTRACT Individuals are typically co-infected by a diverse community of microparasites (e.g. viruses or protozoa) and macroparasites (e.g. helminths). Vertebrates respond to these parasites differently, typically mounting T helper type 1 (Th1) responses against microparasites and Th2 responses against macroparasites. These two responses may be antagonistic such that hosts face a 'decision' of how to allocate potentially limiting resources. Such decisions at the individual host level will influence parasite abundance at the population level which, in turn, will feed back upon the individual level. We take a first step towards a complete theoretical framework by placing an analysis of optimal immune responses under microparasite-macroparasite co-infection within an epidemiological framework. We show that the optimal immune allocation is quantitatively sensitive to the shape of the trade-off curve and qualitatively sensitive to life-history traits of the host, microparasite and macroparasite. This model represents an important first step in placing optimality models of the immune response to co-infection into an epidemiological framework. Ultimately, however, a more complete framework is needed to bring together the optimal strategy at the individual level and the population-level consequences of those responses, before we can truly understand the evolution of host immune responses under parasite co-infection.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquity and importance of parasite co-infections in populations of free-living animals is beginning to be recognized, but few studies have demonstrated differential fitness effects of single infection versus co-infection in free-living populations. We investigated interactions between the emerging bacterial disease bovine tuberculosis (BTB) and the previously existing viral disease Rift Valley fever (RVF) in a competent reservoir host, African buffalo, combining data from a natural outbreak of RVF in captive buffalo at a buffalo breeding facility in 2008 with data collected from a neighbouring free-living herd of African buffalo in Kruger National Park. RVF infection was twice as likely in individual BTB+ buffalo as in BTB- buffalo, which, according to a mathematical model, may increase RVF outbreak size at the population level. In addition, co-infection was associated with a far higher rate of fetal abortion than other infection states. Immune interactions between BTB and RVF may underlie both of these interactions, since animals with BTB had decreased innate immunity and increased pro-inflammatory immune responses. This study is one of the first to demonstrate how the consequences of emerging infections extend beyond direct effects on host health, potentially altering the dynamics and fitness effects of infectious diseases that had previously existed in the ecosystem on free-ranging wildlife populations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
    Proceedings of the Royal Society B: Biological Sciences 04/2015; 282(1805). DOI:10.1098/rspb.2014.2942 · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Helminth infections are ubiquitous worldwide and can trigger potent immune responses that differ from and potentially antagonize host protective responses to microbial pathogens. In this Review we focus on the three main killers in infectious disease-AIDS, tuberculosis and malaria-and critically assesses whether helminths adversely influence host control of these diseases. We also discuss emerging concepts for how M2 macrophages and helminth-modulated dendritic cells can potentially influence the protective immune response to concurrent infections. Finally, we present evidence advocating for more efforts to determine how and to what extent helminths interfere with the successful control of specific concurrent coinfections.
    Nature Immunology 10/2013; 14(11):1118-26. DOI:10.1038/ni.2736 · 24.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Helminthes have the capacity to modulate host immunity, leading to positive interactions with coinfecting microparasites. This phenomenon has been primarily studied during coinfections with a narrow range of geo-helminthes and intracellular microparasites in human populations or under laboratory conditions. Far less is known regarding differences in coinfection dynamics between helminth types, the range of microparasites that might be affected or the overall community-level effects of helminth infections on microparasites in wild systems. Here, we analysed the presence/absence and abundance patterns of enteric parasites in long-tailed macaques (Macaca fascicularis) on the island of Bali, Indonesia, to assess whether naturally occurring helminth infections were associated with increased shedding of the most common intracellular (Cryptosporidium spp., Isospora spp.) and extracellular (Entamoeba spp., Giardia spp.) microparasites. We also comparatively assessed the statistical correlations of different helminth taxa with microparasite shedding to determine if there were consistent relationships between the specific helminth taxa and microparasites. Helminth infections were associated with increased shedding of both intracellular and extracellular microparasites. Platyhelminthes repeatedly displayed strong positive correlations with several microparasites; while nematodes did not. Our results indicate that helminthes can influence microparasite community shedding dynamics under wild conditions, but that trends may be driven by a narrow range of helminthes.
    Parasitology 09/2014; DOI:10.1017/S0031182014001462 · 2.35 Impact Factor

Full-text (2 Sources)

Available from
Jan 23, 2015