The abundant extrachromosomal DNA content of the Spiroplasma citri GII3-3X genome

Université Victor Ségalen Bordeaux 2, UMR 1090 Génomique Diversité Pouvoir Pathogène, BP 81, F-33883 Villenave d'Ornon, France.
BMC Genomics (Impact Factor: 4.04). 02/2008; 9:195. DOI: 10.1186/1471-2164-9-195
Source: PubMed

ABSTRACT Spiroplama citri, the causal agent of citrus stubborn disease, is a bacterium of the class Mollicutes and is transmitted by phloem-feeding leafhopper vectors. In order to characterize candidate genes potentially involved in spiroplasma transmission and pathogenicity, the genome of S. citri strain GII3-3X is currently being deciphered.
Assembling 20,000 sequencing reads generated seven circular contigs, none of which fit the 1.8 Mb chromosome map or carried chromosomal markers. These contigs correspond to seven plasmids: pSci1 to pSci6, with sizes ranging from 12.9 to 35.3 kbp and pSciA of 7.8 kbp. Plasmids pSci were detected as multiple copies in strain GII3-3X. Plasmid copy numbers of pSci1-6, as deduced from sequencing coverage, were estimated at 10 to 14 copies per spiroplasma cell, representing 1.6 Mb of extrachromosomal DNA. Genes encoding proteins of the TrsE-TraE, Mob, TraD-TraG, and Soj-ParA protein families were predicted in most of the pSci sequences, in addition to members of 14 protein families of unknown function. Plasmid pSci6 encodes protein P32, a marker of insect transmissibility. Plasmids pSci1-5 code for eight different S. citri adhesion-related proteins (ScARPs) that are homologous to the previously described protein P89 and the S. kunkelii SkARP1. Conserved signal peptides and C-terminal transmembrane alpha helices were predicted in all ScARPs. The predicted surface-exposed N-terminal region possesses the following elements: (i) 6 to 8 repeats of 39 to 42 amino acids each (sarpin repeats), (ii) a central conserved region of 330 amino acids followed by (iii) a more variable domain of about 110 amino acids. The C-terminus, predicted to be cytoplasmic, consists of a 27 amino acid stretch enriched in arginine and lysine (KR) and an optional 23 amino acid stretch enriched in lysine, aspartate and glutamate (KDE). Plasmids pSci mainly present a linear increase of cumulative GC skew except in regions presenting conserved hairpin structures.
The genome of S. citri GII3-3X is characterized by abundant extrachromosomal elements. The pSci plasmids could not only be vertically inherited but also horizontally transmitted, as they encode proteins usually involved in DNA element partitioning and cell to cell DNA transfer. Because plasmids pSci1-5 encode surface proteins of the ScARP family and pSci6 was recently shown to confer insect transmissibility, diversity and abundance of S. citri plasmids may essentially aid the rapid adaptation of S. citri to more efficient transmission by different insect vectors and to various plant hosts.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Citrus stubborn disease (CSD), first identified in California, is a widespread bacterial disease found in most arid citrus producing regions in the U.S. and Mediterranean Region. The disease is caused by Spiroplasma citri, an insect-transmitted and phloem-colonizing bacterium. CSD causes significant tree damage resulting in loss of fruit production and quality. Detection of CSD is challenging due to low and fluctuating titer and sporadic distribution of the pathogen in infected trees. In this study, we report the development of a novel diagnostic method for CSD using a S. citri secreted protein as the detection marker. Microbial pathogens secrete a variety of proteins during infection that can potentially disperse systemically in infected plants with the vascular flow. Therefore, their distribution may not be restricted to the pathogen infection sites and could be used as a biological marker for infection. Using mass spectrometry analysis, we identified a unique secreted protein from S. citri that is highly expressed in the presence of citrus phloem extract. ScCCPP1, an antibody generated against this protein, was able to distinguish S. citri-infected citrus and periwinkle from healthy plants. In addition, the antiserum could be used to detect CSD using a simple direct tissue print assay without the need of sample processing or specialized lab equipment and may be suitable for field surveys. This study provides proof of a novel concept of using pathogen secreted protein as a marker for diagnosis of a citrus bacterial disease and can probably be applied to other plant diseases.
    Phytopathology 08/2013; 104(2). DOI:10.1094/PHYTO-06-13-0176-R · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spiroplasma melliferum is a wall-less bacterium with dynamic helical geometry. This organism is geometrically well defined and internally well ordered, and has an exceedingly small genome. Individual cells are chemotactic, polar, and swim actively. Their dynamic helicity can be traced at the molecular level to a highly ordered linear motor (composed essentially of the proteins fib and MreB) that is positioned on a defined helical line along the internal face of the cell's membrane. Using an array of complementary, informationally overlapping approaches, we have taken advantage of this uniquely simple, near-minimal life-form and its helical geometry to analyze the copy numbers of Spiroplasma's essential parts, as well as to elucidate how these components are spatially organized to subserve the whole living cell. Scanning transmission electron microscopy (STEM) was used to measure the mass-per-length and mass-per-area of whole cells, membrane fractions, intact cytoskeletons and cytoskeletal components. These local data were fit into whole-cell geometric parameters determined by a variety of light microscopy modalities. Hydrodynamic data obtained by analytical ultracentrifugation allowed computation of the hydration state of whole living cells, for which the relative amounts of protein, lipid, carbohydrate, DNA, and RNA were also estimated analytically. Finally, ribosome and RNA content, genome size and gene expression were also estimated (using stereology, spectroscopy and 2D-gel analysis, respectively). Taken together, the results provide a general framework for a minimal inventory and arrangement of the major cellular components needed to support life.
    PLoS ONE 02/2014; 9(2):e87921. DOI:10.1371/journal.pone.0087921 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first-cultured and most-studied spiroplasma is Spiroplasma citri, the causal agent of citrus stubborn disease, one of the three plant-pathogenic, sieve-tube-restricted, and leafhopper vector-transmitted mollicutes. In Iranian Fars province, S. citri cultures were obtained from stubborn affected citrus trees, sesame and safflower plants, and from the leafhopper vector Circulifer haematoceps. Spiralin gene sequences from different S. citri isolates were amplified by PCR, cloned, and sequenced. Phylogenetic trees based on spiralin gene sequence showed diversity and indicated the presence of three clusters among the S. citri strains. Comparison of the amino acid sequences of eleven spiralins from Iranian strains and those from the reference S. citri strain GII-3 (241 aa), Palmyre strain (242 aa), Spiroplasma kunkelii (240 aa), and Spiroplasma phoeniceum (237 aa) confirmed the conservation of general features of the protein. However, the spiralin of an S. citri isolate named Shiraz I comprised 346 amino acids and showed a large duplication of the region comprised between two short repeats previously identified in S. citri spiralins. We report in this paper the spiralin diversity in Spiroplasma strains from southern Iran and for the first time a partial internal duplication of the spiralin gene.
    Current Microbiology 09/2013; DOI:10.1007/s00284-013-0437-z · 1.36 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014