Effect of Encapsulating Agents on Dispersion Status and Photochemical Reactivity of C 60 in the Aqueous Phase

School of Civil and Environmental Engineering, Georgia Institute of Technology, 200 Bobby Dodd Way, Atlanta, Georgia 30332-0373, USA.
Environmental Science and Technology (Impact Factor: 5.33). 04/2008; 42(5):1552-7. DOI: 10.1021/es702552a
Source: PubMed


This study demonstrates that the degree of C60 clustering in the aqueous phase is strongly dependent on the type and concentration of encapsulating agents, such as surfactant, polymer, and natural organic matter that interact with C60. The degree of C60 clustering was quantitatively analyzed using ultraviolet-visible spectral characteristics. The dispersion status played a critical role in determining the photochemical reactivity of C60, in particular, its ability to mediate energy transfer and to produce singlet oxygen in the presence of oxygen. Consistent with findings in the organic phase, C60 in the aqueous phase lost its intrinsic photochemical reactivity when they formed aggregates. Experiments performed using a laser flash photolysis suggested that the loss of reactivity resulted from a drastic decrease in lifetime of a key reaction intermediate, that is, triplet-state C60. This study suggests that the photochemical reactivity of C60 in the aqueous phase, which has been linked to oxidative damage in biological systems in earlier studies, is strongly dependent on the media environment surrounding C60.

4 Reads
  • Source
    • "The cationic surfactant cetyltrimethylammonium bromide (CTAB) readily adsorbs onto negatively charged NPs through the attractive electrostatic interactions between cationic quaternary ammonium groups (CTA + ) on CTAB and negatively charged NPs [19] [20] [25] [26]. Such attractive interactions facilitate formation of large NP aggregates that lead to decreased transport potential in granular media by increasing their rates of settling and likelihood for straining [20] [27] [28]. On the other hand, the adsorbed CTAB layer may enhance steric repulsion between CTAB-modified NPs that would increase their stability [25]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about the mobility of engineered nanoparticles (ENPs) in granular media at environmentally relevant concentrations of surfactants, which represents a critical knowledge gap in employing ENPs for in situ remediation of contaminated groundwater. In this study, transport and retention of alizarin red S (ARS)-labeled hydroxyapatite nanoparticle (nHAP) were investigated in water-saturated sand at environmentally relevant concentrations of surfactants: anionic sodium dodecyl benzene sulfonate (SDBS, 0-50 mg L-1) and cationic cetyltrimethylammonium bromide (CTAB, 0-5 mg L-1). Transport of ARS-nHAP increased with increasing SDBS concentration because of enhanced colloidal stability and reduced aggregate size arising from enhanced electrostatic, osmotic, and elastic-steric repulsions between ARS-nHAP and sand grains. In contrast, transport decreased significantly with increasing CTAB concentration due to reduced surface charge and enhanced aggregation of ARS-nHAP. Osmotic and elastic-steric repulsions played a minor role in enhancing ARS-nHAP colloidal stability in CTAB tests. Retention profiles of ARS-nHAP exhibited hyperexponential-shapes for all conditions tested and became more pronounced as CTAB concentration increased. The phenomenon was attributed to the aggregation and ripening of ARS-nHAP in the presence of surfactants, particularly CTAB. Overall, the present study suggests that surfactant type and concentration may be important considerations in employing nHAP for engineered in situ remediation of metal- and radionuclide-contaminated groundwater.
    Colloids and Surfaces A Physicochemical and Engineering Aspects 06/2014; 457. DOI:10.1016/j.colsurfa.2014.05.041 · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An explanation is proposed for the electrorheological effect under fields based on the fact that the field distribution is controlled by the conduction properties (linear and nonlinear) of both the solid particles and the carrying liquid. A simplified analysis gives an expression for the attraction force between two very slightly conducting spheres in contact, immersed in a dielectric liquid, as a function of the imposed field and the ratio of conductivities. The predictions are confirmed by a large-scale experiment and qualitatively account for some observations on an electrorheological fluid
    Conduction and Breakdown in Dielectric Liquids,1993., ICDL '93., IEEE 11th International Conference on; 08/1993
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study different encapsulating agents have been used for chemical modification of fullerenes. Fullerenes have reacted with tetrahydrofuran, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate and ethylene vinyl acetate–ethylene vinyl versatate at room temperature under mechanical milling. The obtained powder has been dispersed in water by ultrasonication. The fullerene based colloids have been characterized by UV–vis, FTIR, Raman spectroscopy and atomic force microscopy. FTIR and Raman analysis have shown the presence of C60 after surface functionalization.
    Applied Surface Science 01/2008; 255(17):7537-7541. DOI:10.1016/j.apsusc.2009.04.023 · 2.71 Impact Factor
Show more