Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice.

Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, 66424 Homburg/Saar, Germany.
Circulation (Impact Factor: 15.2). 06/2008; 117(18):2377-87. DOI: 10.1161/CIRCULATIONAHA.107.746537
Source: PubMed

ABSTRACT Elevated heart rate is associated with increased cardiovascular morbidity. We hypothesized that selective heart rate reduction may influence endothelial function and atherogenesis and tested the effects of the I(f) current inhibitor ivabradine in apolipoprotein E-deficient mice.
Male apolipoprotein E-deficient mice fed a high-cholesterol diet were treated with ivabradine (10 mg . kg(-1) . d(-1)) or vehicle for 6 weeks (n=10 per group). Ivabradine reduced heart rate by 13.4% (472+/-9 versus 545+/-11 bpm; P<0.01) but did not alter blood pressure or lipid levels. Endothelium-dependent relaxation of aortic rings was significantly improved in ivabradine-fed animals (P<0.01). Ivabradine decreased atherosclerotic plaque size in the aortic root by >40% and in the ascending aorta by >70% (P<0.05). Heart rate reduction by ivabradine had no effect on the number of endothelial progenitor cells and did not alter aortic endothelial nitric oxide synthase, phosphorylated Akt, vascular cell adhesion molecule-1, or intercellular adhesion molecule-1 expression but decreased monocyte chemotactic protein-1 mRNA and exerted potent antioxidative effects. Ivabradine reduced vascular NADPH oxidase activity to 48+/-6% and decreased markers of superoxide production and lipid peroxidation in the aortic wall (P<0.05). The in vivo effects of ivabradine were absent at a dose that did not lower heart rate, in aortic rings treated ex vivo, and in cultured vascular cells. In contrast to ivabradine, treatment with hydralazine (25 mg . kg(-1) . d(-1) for 6 weeks) reduced blood pressure (-15%) but increased heart rate (37%) and did not improve endothelial function, atherosclerosis, or oxidative stress.
Selective heart rate reduction with ivabradine decreases markers of vascular oxidative stress, improves endothelial function, and reduces atherosclerotic plaque formation in apolipoprotein E-deficient mice.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heart rate is an important contributor in the pathophysiology of both coronary artery disease (CAD) and heart failure (HF). Ivabradine is an anti-anginal and anti-ischaemic agent, which selectively and specifically inhibits the I f current in the sino-atrial node and provides pure heart rate reduction without altering other cardiac parameters, including conduction, and without directly affecting other haemodynamic parameters. It is approved for the treatment of CAD and HF. This article summarises the pharmacological properties, pharmacokinetics, clinical efficacy and tolerability of ivabradine in the treatment of CAD and HF, and presents evidence demonstrating that the pharmacological and clinical properties and clinical efficacy of ivabradine make it an important therapeutic choice for patients with stable CAD or HF. The positive effect of ivabradine on angina pectoris symptoms and its ability to reduce myocardial ischemia make it an important agent in the management of patients with stable CAD or chronic HF. Further studies are underway to add to the already robust evidence of ivabradine for the prevention of cardiovascular events in patients with CAD but without clinical HF. The SIGNIFY (Study assessInG the morbidity-mortality beNefits of the I f inhibitor ivabradine in patients with coronarY artery disease) trial includes patients with stable CAD and an LVEF above 40 %, with no clinical sign of HF, and is investigating the long-term effects (over a period of 48 months) of ivabradine in a large study population. So far, this study has included more than 19,000 patients from 51 countries.
    Drugs 09/2013; · 4.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: To study the clinical significance of presenting blood pressure parameters and heart rate in patients with hypertensive crisis. METHODS: In patients admitted with hypertensive crisis between January 2011 and May 2011, demography, mode of presentation, co-morbidities, blood pressure readings, and heart rate at presentation were documented. Further clustering of hypertensive crisis into emergency or urgency was based on the presence or absence of target organ involvement. The relationship between blood pressure parameters, heart rate, and other variables was analyzed. RESULTS: 189 patients in sinus rhythm were enrolled in this pilot study. The rate of hypertensive urgency was 56 %, whereas the rate of hypertensive emergency was 44 %, respectively. Subjects with hypertensive emergency had a higher mean heart rate (93 ± 22.7 bpm) than those with urgency (81 ± 11.5 bpm) (P = 0.015). Women had higher heart rates (92 ± 18.5 bpm) than men (86 ± 17.6 bpm) (P = 0.014). Heart rates below 100 bpm had a specificity of 94 %, classifying patients as hypertensive urgency. Tachycardia had a powerful statistical association with hypertensive left ventricular failure (P < 0.0001). Other hemodynamic parameters, including systolic blood pressure, diastolic blood pressure, pulse pressure, and mean blood pressure relates neither to urgency nor to emergency. Diabetic patients with HBA1c levels of more than 53 mmol/mol had a heart rate of more than 100 bpm (P = 0.015) during hypertensive crisis. CONCLUSIONS: Normal heart rate is characteristic of hypertensive urgency. Tachycardia in this setting is an ominous sign and denotes hypertensive complications in particular left ventricular failure. Among diabetics, elevated heart rate is associated with poor glycemic control.
    Clinical Research in Cardiology 04/2013; · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Die Herzfrequenz ist ein kardiovaskulärer Risikoindikator. Insbesondere bei Patienten mit Herzinsuffizienz und möglicherweise auch bei koronarer Herzerkrankung ist eine erhöhte Ruhe-Herzfrequenz als unabhängiger Risikofaktor anzusehen. Klinische und experimentelle Arbeiten weisen darauf hin, dass die Herzfrequenz selbst direkte Wirkungen auf strukturelle und funktionelle Eigenschaften des Herz-Kreislauf-Systems, v. a. auf das Gefäßsystem, ausübt. Die Daten der SHIFT-Studie belegen den Stellenwert der Herzfrequenz als Risikofaktor und Therapieansatz bei Patienten mit chronischer Herzinsuffizienz: Zusätzlich zu einer leitliniengerechten medikamentösen Therapie reduzierte Ivabradin die Häufigkeit von Klinikeinweisungen aufgrund einer klinischen Verschlechterung und reduzierte zudem herzinsuffizienzbedingte Todesfälle. Die Daten der BEAUTIFUL-Studie zeigen, dass eine Herzfrequenz von ≥70 Schlägen pro Minute bei Patienten mit einer ischämischen Kardiomyopathie das Risiko für koronare Ereignisse erhöht.
    Der Internist 53(1). · 0.33 Impact Factor


Available from