An inducible transgene expression system for regulated phenotypic modification of human embryonic stem cells

Stem Cell Program, University of California, Davis, CA 95616, USA.
Stem Cells and Development (Impact Factor: 4.2). 05/2008; 17(2):315-24. DOI: 10.1089/scd.2007.0114
Source: PubMed

ABSTRACT Self-renewing pluripotent human embryonic stem (hES) cells are capable of regenerating such non-dividing cells as neurons and cardiomyocytes for therapies and can serve as an excellent experimental model for studying early human development. Both the spatial and temporal relationships of gene expression play a crucial role in determining differentiation; to obtain a better understanding of hES cell differentiation, it will be necessary to establish an inducible system in hES cells that enables specific transgene(s) to reversibly and conditionally express (1) at specific levels and (2) at particular time points during development. Using lentivirus (LV)-mediated gene transfer and a tetracycline-controlled trans-repressor (TR), we first established in hES cells a doxycycline (DOX)-inducible expression system of green fluorescent protein (GFP) to probe its reversibility and kinetics. Upon the addition of DOX, the percentage of GFP(+) hES cells increased time dependently: The time at which 50% of all green cells appeared (T(50)(on)) was 119.5+/-3.2 h; upon DOX removal, GFP expression declined with a half-time (T(50)(off)) of 127.7+/-3.9 h and became completely silenced at day 8. Both the proportion and total mean fluorescence intensity (MFI) were dose-dependent (EC(50)=24.5+/-2.2 ng/ml). The same system when incorporated into murine (m) ES cells similarly exhibited reversible dose-dependent responses with a similar sensitivity (EC(50)=49.5+/-8.5 ng/ml), but the much faster kinetics (T(50)(on)=35.5+/-5.5 h, T(50)(off) = 71.5+/-2.4 hours). DOX-induced expression of the Kir2.1 channels in mES and hES cells led to robust expression of the inwardly rectifying potassium (K(+)) current and thereby hyperpolarized the resting membrane potential (RMP). We conclude that the LV-inducible system established presents a unique tool for probing differentiation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although cellular signaling pathways that affect lentivirus infection have been investigated, the role of cell-cell interactions in lentiviral gene delivery remains elusive. In the course of our studies we observed that lentiviral gene transfer was a strong function of the position of epithelial cells within colonies. While peripheral cells were transduced efficiently, cells in the center of colonies were resistant to gene transfer. In addition, gene delivery was enhanced significantly under culture conditions that disrupted adherens junctions (AJ) but decreased upon AJ formation. In agreement, gene knockdown and gain-of-function approaches showed that α-catenin, a key component of the AJ complex prevented lentivirus gene transfer. Using a doxycycline regulatable system we showed that expression of dominant negative E-cadherin enhanced gene transfer in a dose-dependent manner. In addition, dissolution of AJ by doxycycline increased entry of lentiviral particles into the cell cytoplasm in a dose-dependent manner. Taken together our results demonstrate that AJ formation renders cells non-permissive to lentiviral gene transfer and may facilitate development of simple means to enhance gene delivery or combat virus infection.
    PLoS ONE 11/2013; 8(11):e79265. DOI:10.1371/journal.pone.0079265 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heart diseases remain a major cause of mortality and morbidity worldwide. However, terminally differentiated human adult cardiomyocytes (CMs) possess a very limited innate ability to regenerate. Directed differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) into CMs has enabled clinicians and researchers to pursue the novel therapeutic paradigm of cell-based cardiac regeneration. In addition to tissue engineering and transplantation studies, the need for functional CMs has also prompted researchers to explore molecular pathways and develop strategies to improve the quality, purity and quantity of hESC-derived and iPSC-derived CMs. In this review, we describe various approaches in directed CM differentiation and driven maturation, and discuss potential limitations associated with hESCs and iPSCs, with an emphasis on the role of epigenetic regulation and chromatin remodeling, in the context of the potential and challenges of using hESC-CMs and iPSC-CMs for drug discovery and toxicity screening, disease modeling, and clinical applications.
    Stem Cell Research & Therapy 08/2013; 4(4):97. DOI:10.1186/scrt308 · 4.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peter Sartipy – Cellartis AB, Göteborg, Sweden
    Drug Discovery Today Technologies 12/2008; 5(4). DOI:10.1016/j.ddtec.2008.10.002


Available from