Pharmaceutical residues in the river Rhine--results of a one-decade monitoring programme.

DVGW-Technologiezentrum Wasser, Karlsruher Strasse 84, 76139 Karlsruhe, Germany.
Journal of Environmental Monitoring (Impact Factor: 2.09). 06/2008; 10(5):664-70. DOI: 10.1039/b800701b
Source: PubMed

ABSTRACT In this paper, results of an extensive monitoring programme for pharmaceutical residues in the river Rhine are presented. For one decade (1997 until 2006), the occurrence of widely used human pharmaceuticals like analgesics, lipid regulators, antiepileptics and others has been studied at four locations along the river Rhine. The results of more than 500 analyses clearly prove that compounds such as carbamazepine or diclofenac are regularly found in the river Rhine in concentrations up to several hundred ng per litre. Combining concentration levels with data on water flow enables the calculation of transports, which e.g. for carbamazepine or diclofenac were in the range of several tons per year. The evaluation of the long-term monitoring data shows that only a slight decrease in concentration levels as well as in annual transports can be observed and thus the contamination of the river Rhine by pharmaceutical residues during the last decade has to be regarded as almost constant. Seasonal variations can be detected for bezafibrate, diclofenac and ibuprofen, for which the concentrations are much lower in the summer months. A more effective removal during wastewater treatment in the warmer periods of the year seems to be the major reason for those variations. For carbamazepine, no comparable seasonal effect can be found.

1 Bookmark
  • Source
    Water Research 01/2011; 45(3):1512-4; discussion 1515-7. · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Removal of pharmaceuticals (PhCs) by photocatalysis is a promising avenue in water treatment. The efficiency of these treatments on PhC derivatives compared to their parent molecules remains poorly documented. The present study investigates the efficiency of photodegradation catalyzed by TiO2 and ZnO nanoparticles on the removal of carbamazepine (CBZ) and three of its derivatives; carbamazepine epoxide (CBZ-E), acridine (AI), and acridone (AO). The effects of environmental parameters such as pH, ionic strength, and natural organic matter content on photodegradation efficiency (transformation after 6h and kinetics) were tested. We report that the efficiency of the catalysts (TiO2 and ZnO) can be very different when comparing CBZ and its derivatives (CBZ-E, AI and AO). TiO2 was more efficient than ZnO at degrading CBZ and CBZ-E. For AI and AO, no significant differences were observed between the two catalysts. We also report that environmental parameters have contrasting effects on the efficiency of the photodegradation of CBZ compared to its derivatives. Changing pH and organic matter content had the most contrasted effects; the photodegradation of CBZ and CBZ-E was significantly affected by pH (especially in presence of TiO2 NPs) and by the presence of natural organic matter. In contrast, the photodegradation of AI and AO was not affected by pH and organic matter. Only the photodegradation of CBZ was clearly affected by IS and solely at very high IS (1M). Overall, our results highlight that TiO2 and ZnO catalysts present contrasted efficiency on the removal of CBZ when compared to its derivatives (CBZ-E, AI and AO). Our results also show that the effect of environmental parameters on the efficiency of the photodegradation of CBZ derivatives cannot be predicted based on the behavior of the parent molecule (CBZ).
    Science of The Total Environment 01/2014; 475C:16-22. · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the ozonation of the antineoplastic drugs cyclophosphamide (CP), ifosfamide (IF), and 5-fluorouracil (5-FU) and of the vasodilator pentoxifylline (PEN) in distilled water, in pharmaceutical wastewater, and in hospital effluent at pH 5-11. Under an alkaline pH of 11, all of the target compounds rapidly degraded through the attack of hydroxyl radicals, which resulted in their complete removal within 5 min at an ozone supply rate of 3 g O3/h. Under acidic pH conditions, such as pH 5.6, CP and IF exhibited slower removal rates; however, compounds with unsaturated C-C bonds, such as 5-FU and PEN, were still removed at rapid rates under acidic conditions. Although the parent compounds were removed within minutes, the resulting ozonation byproducts were resistant to further ozonation and possessed increased Microtox acute toxicity. In distilled water, the resulting ozonation products exhibited minimal mineralization but high acute toxicity, whereas in naturally buffered pharmaceutical and hospital effluents, the byproducts were more amenable to removal and detoxification.
    Environmental science and pollution research international. 08/2014;