Article

Ureaplasma parvum lipoproteins, including MB antigen, activate NF-{kappa}B through TLR1, TLR2 and TLR6.

Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
Microbiology (Impact Factor: 2.84). 06/2008; 154(Pt 5):1318-25. DOI: 10.1099/mic.0.2007/016212-0
Source: PubMed

ABSTRACT Ureaplasma species (Ureaplasma parvum and Ureaplasma urealyticum) are commonly isolated pathogens from the female reproductive tract and are associated with perinatal diseases in humans. Inappropriate induction of inflammatory responses may be involved in the occurrence of such diseases; however, pathogenic agents that induce the inflammatory response have not been identified in ureaplasmas. In this study, we examined the involvement of Toll-like receptors (TLRs) in the activation of the immune response by U. parvum lipoproteins, as well as the U. parvum components responsible for nuclear factor kappaB (NF-kappaB) activation. The Triton X-114 (TX-114) detergent phase of U. parvum was found to induce NF-kappaB through TLR2. The active components of the TX-114 detergent phase were lipoproteins, such as multiple banded (MB) antigen, UU012 and UU016 of U. parvum. The activation of NF-kappaB by these lipoproteins was inhibited by dominant negative (DN) constructs of TLR1 and DN TLR6. Thus, the lipoproteins from U. parvum were found to activate NF-kappaB through TLR1, TLR2 and TLR6. Furthermore, these lipoproteins possessed an ability to induce tumour necrosis factor-alpha (TNF-alpha) in mouse peritoneal macrophages.

Download full-text

Full-text

Available from: Koichi Kuwano, Apr 14, 2015
0 Followers
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ureaplasma spp. are members of the family Mycoplasmataceae and have been considered to be associated with chorioamnionitis and preterm delivery. However, it is unclear whether Ureaplasma spp. have virulence factors related to these manifestations. The purpose of the present study was to determine whether the immunogenic protein multiple-banded antigen (MBA) from Ureaplasma parvum is a virulence factor for preterm delivery. We partially purified MBA from a type strain and clinical isolates of U. parvum, and also synthesized a diacylated lipopeptide derived from U. parvum, UPM-1. Using luciferase assays, both MBA-rich fraction MRF and UPM-1 activated the NF-κB pathway via TLR2. UPM-1 upregulated IL-1β, IL-6, IL-12p35, TNF-α, MIP2, LIX, and iNOS in mouse peritoneal macrophage. MRF or UPM-1 was injected into uteri on day 15 of gestation on pregnant C3H/HeN mice. The intrauterine MRF injection group had a significantly higher incidence of intrauterine fetal death (IUFD; 38.5%) than the control group (14.0%). Interestingly, intrauterine injection of UPM-1 caused preterm deliveries at high concentration (80.0%). In contrast, a low concentration of UPM-1 induced a significantly higher rate of fetal deaths (55.2%) than the control group (14.0%). The placentas of the UPM-1 injection group showed neutrophil infiltration and increased iNOS protein expression. Our data indicate that MBA from the clinical isolate of U. parvum is a potential virulence factor for IUFD and preterm delivery in mice and that the N-terminal diacylated lipopeptide is essential for the initiation of inflammation.
    Journal of Reproductive Immunology 10/2013; 100(2). DOI:10.1016/j.jri.2013.10.001 · 2.37 Impact Factor
  • Source
    Clinical Management of Complicated Urinary Tract Infection, 09/2011; , ISBN: 978-953-307-393-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phase variation of the major ureaplasma surface membrane protein, the multiple-banded antigen (MBA), with its counterpart, the UU376 protein, was recently discussed as a result of DNA inversion occurring at specific inverted repeats. Two similar inverted repeats to the ones within the mba locus were found in the genome of Ureaplasma parvum serovar 3; one within the MBA N-terminal paralogue UU172 and another in the adjacent intergenic spacer region. In this report, we demonstrate on both genomic and protein level that DNA inversion at these inverted repeats leads to alternating expression between UU172 and the neighbouring conserved hypothetical ORF UU171. Sequence analysis of this phase-variable 'UU172 element' from both U. parvum and U. urealyticum strains revealed that it is highly conserved among both species and that it also includes the orthologue of UU144. A third inverted repeat region in UU144 is proposed to serve as an additional potential inversion site from which chimeric genes can evolve. Our results indicate that site-specific recombination events in the genome of U. parvum serovar 3 are dynamic and frequent, leading to a broad spectrum of antigenic variation by which the organism may evade host immune responses.
    Molecular Microbiology 02/2011; 79(3):663-76. DOI:10.1111/j.1365-2958.2010.07474.x · 5.03 Impact Factor