Article

Ureaplasma parvum lipoproteins, including MB antigen, activate NF-{kappa}B through TLR1, TLR2 and TLR6.

Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
Microbiology (Impact Factor: 2.84). 06/2008; 154(Pt 5):1318-25. DOI: 10.1099/mic.0.2007/016212-0
Source: PubMed

ABSTRACT Ureaplasma species (Ureaplasma parvum and Ureaplasma urealyticum) are commonly isolated pathogens from the female reproductive tract and are associated with perinatal diseases in humans. Inappropriate induction of inflammatory responses may be involved in the occurrence of such diseases; however, pathogenic agents that induce the inflammatory response have not been identified in ureaplasmas. In this study, we examined the involvement of Toll-like receptors (TLRs) in the activation of the immune response by U. parvum lipoproteins, as well as the U. parvum components responsible for nuclear factor kappaB (NF-kappaB) activation. The Triton X-114 (TX-114) detergent phase of U. parvum was found to induce NF-kappaB through TLR2. The active components of the TX-114 detergent phase were lipoproteins, such as multiple banded (MB) antigen, UU012 and UU016 of U. parvum. The activation of NF-kappaB by these lipoproteins was inhibited by dominant negative (DN) constructs of TLR1 and DN TLR6. Thus, the lipoproteins from U. parvum were found to activate NF-kappaB through TLR1, TLR2 and TLR6. Furthermore, these lipoproteins possessed an ability to induce tumour necrosis factor-alpha (TNF-alpha) in mouse peritoneal macrophages.

0 Bookmarks
 · 
84 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ureaplasma spp. are members of the family Mycoplasmataceae and have been considered to be associated with chorioamnionitis and preterm delivery. However, it is unclear whether Ureaplasma spp. have virulence factors related to these manifestations. The purpose of the present study was to determine whether the immunogenic protein multiple-banded antigen (MBA) from Ureaplasma parvum is a virulence factor for preterm delivery. We partially purified MBA from a type strain and clinical isolates of U. parvum, and also synthesized a diacylated lipopeptide derived from U. parvum, UPM-1. Using luciferase assays, both MBA-rich fraction MRF and UPM-1 activated the NF-κB pathway via TLR2. UPM-1 upregulated IL-1β, IL-6, IL-12p35, TNF-α, MIP2, LIX, and iNOS in mouse peritoneal macrophage. MRF or UPM-1 was injected into uteri on day 15 of gestation on pregnant C3H/HeN mice. The intrauterine MRF injection group had a significantly higher incidence of intrauterine fetal death (IUFD; 38.5%) than the control group (14.0%). Interestingly, intrauterine injection of UPM-1 caused preterm deliveries at high concentration (80.0%). In contrast, a low concentration of UPM-1 induced a significantly higher rate of fetal deaths (55.2%) than the control group (14.0%). The placentas of the UPM-1 injection group showed neutrophil infiltration and increased iNOS protein expression. Our data indicate that MBA from the clinical isolate of U. parvum is a potential virulence factor for IUFD and preterm delivery in mice and that the N-terminal diacylated lipopeptide is essential for the initiation of inflammation.
    Journal of Reproductive Immunology 10/2013; · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Both BALB/c and C57BL/6 mice are susceptible to intrauterine infection with Ureaplasma parvum, but only protypical TH2/M2 BALB/c mice develop severe chorioamnionitis, fetal infection, and fetal inflammatory response syndrome-like (FIRS) pathology. Microscopy, gene expression analysis, and ELISA were used to identify placental innate immune responses relevant to macrophage polarity, severe chorioamnionitis, and fetal infection. Both mouse strains exhibited a pro-M2 cytokine profile at the maternal/fetal interface. In BALB/c mice, expression of CD14 and TLRs 1, 2, 6 was increased in infected placentas; TLR2 and CD14 were localized to neutrophils. Increased TLR2/CD14 was also observed in BALB/c syncytiotrophoblasts in tissues with pathological evidence of FIRS. In contrast, expression in C57BL/6 placentas was either unchanged or down-regulated. Our findings show a link between increased syncytiotrophoblast expression of CD14/TLR2 and FIRS-like pathology in BALB/c mice. Functional studies are required to determine if CD14 is contributing to fetal morbidity during chorioamnionitis.
    American Journal Of Reproductive Immunology 12/2013; · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pre-term birth (PTB) associated with intrauterine infection and inflammation (IUI) is the major cause of early PTB less than 32 weeks of gestation. Ureaplasma spp. are common commensals of the urogenital tract in pregnancy and are the most commonly identified microorganisms in amniotic fluid of pre-term pregnancies. While we have an understanding of the causal relationship between intra-amniotic infection, inflammation and PTB, we are still unable to explain why vaginal Ureaplasma sp. colonization is tolerated in some women but causes PTB in others. It is now known that placental tissues are frequently colonized by bacteria even in apparently healthy pregnancies delivered at term; usually this occurs in the absence of a significant local inflammatory response. It appears, therefore, that the site, nature, and magnitude of the immune response to infiltrating microorganisms are key in determining pregnancy outcome. Some evidence exists that the maternal serological response to Ureaplasma sp. colonization may be predictive of adverse pregnancy outcome, although issues such as the importance of virulence factors (serovars) and the timing, magnitude, and functional consequences of the immune response await clarification. This mini-review discusses the evidence linking the maternal immune response to risk of PTB and the potential applications of maternal serological analysis for predicting obstetric outcome.
    Frontiers in Immunology 12/2014; 5:624.

Preview

Download
0 Downloads
Available from