Article

Biofilm formation by saprophytic and pathogenic leptospires

Unité de Biologie des Spirochètes, Institut Pasteur, 75724 Paris Cedex 15, France.
Microbiology (Impact Factor: 2.84). 06/2008; 154(Pt 5):1309-17. DOI: 10.1099/mic.0.2007/014746-0
Source: PubMed

ABSTRACT Leptospires exist as saprophytic organisms that are aquatic or as pathogens that are able to survive in water. Leptospirosis is transmitted to humans through environmental surface waters contaminated by the urine of mammals, usually rodents, which are chronically infected by pathogenic strains. The ecology of Leptospira spp. prompted us to evaluate if these spirochaetes were able to form biofilms. This study investigated the characteristics of biofilm development by both saprophytic and pathogenic Leptospira species using microscopic examinations and a polystyrene plate model. Biofilms were formed preferentially on glass and polystyrene surfaces. Electron microscopic images showed cells embedded in an extracellular matrix. The formation of such a biofilm is consistent with the life of saprophytic strains in water and may help pathogenic strains to survive in environmental habitats and to colonize the host.

Download full-text

Full-text

Available from: Sophie Kernéis-Golsteyn, Mar 11, 2014
1 Follower
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Culture supernatants of leptospiral pathogens have long been known to haemolyse erythrocytes. This property is due, at least in part, to sphingomyelinase activity. Indeed, genome sequencing reveals that pathogenic Leptospira species are richly endowed with sphingomyelinase homologues: five genes have been annotated to encode sphingomyelinases in Leptospira interrogans. Such redundancy suggests that this class of genes is likely to benefit leptospiral pathogens in their interactions with the mammalian host. Surprisingly, sequence comparison with bacterial sphingomyelinases for which the crystal structures are known reveals that only one of the leptospiral homologues has the active site amino acid residues required for enzymic activity. Based on studies of other bacterial toxins, we propose that leptospiral sphingomyelinase homologues, irrespective of their catalytic activity, may possess additional molecular functions that benefit the spirochaete. Potential secretion pathways and roles in pathogenesis are discussed, including nutrient acquisition, dissemination, haemorrhage and immune evasion. Although leptospiral sphingomyelinase-like proteins are best known for their cytolytic properties, we believe that a better understanding of their biological role requires the examination of their sublytic properties as well.
    Microbiology 03/2012; 158(Pt 5):1137-46. DOI:10.1099/mic.0.057737-0 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptospirosis is an important zoonosis and has a worldwide impact on public health. This paper will discuss both the role of immunogenic and pathogenic molecules during leptospirosis infection and possible new targets for immunotherapy against leptospira components. Leptospira, possess a wide variety of mechanisms that allow them to evade the host immune system and cause infection. Many molecules contribute to the ability of Leptospira to adhere, invade, and colonize. The recent sequencing of the Leptospira genome has increased our knowledge about this pathogen. Although the virulence factors, molecular targets, mechanisms of inflammation, and signaling pathways triggered by leptospiral antigens have been studied, some questions are still unanswered. Toll-like receptors (TLRs) are the primary sensors of invading pathogens. TLRs recognize conserved microbial pattern molecules and activate signaling pathways that are pivotal to innate and adaptive immune responses. Recently, a new molecular target has emerged-the Na/K-ATPase-which may contribute to inflammatory and metabolic alteration in this syndrome. Na/K-ATPase is a target for specific fatty acids of host origin and for bacterial components such as the glycolipoprotein fraction (GLP) that may lead to inflammasome activation. We propose that in addition to TLRs, Na/K-ATPase may play a role in the innate response to leptospirosis infection.
    Mediators of Inflammation 10/2012; 2012:317950. DOI:10.1155/2012/317950 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Summary Rats, dogs, cattle, bats and sea lions, exemplify the diversity of mammalian species that can facilitate transmission of the zoonotic disease leptospirosis. The causative agent, pathogenic species of Leptospira, is shed in urine of chronically infected hosts. Direct contact with infected urine, or indirectly with water sources contaminated with infected urine, poses a risk of infection for humans exposed during water-related recreational and occupational activities. New serovars of Leptospira and maintenance hosts continue to be identified. In the western world, incidences of recreational exposure are increasing, while incidences of occupational exposure are decreasing. Adventure travellers returning from tropical regions, are presenting at clinics with symptoms of leptospirosis following participation in high risk activities including white water rafting, triathlons, endurance races and caving. Risks of infection can be reduced with increased awareness of how the disease is contracted, by avoiding contact with high risk water sources and the use of prophylaxis during high risk activities. Molecular techniques can be used to provide risk assessments prior to competition, to supplement epidemiology, and to assess shedding of Leptospira in urine samples.
    Journal of Applied Microbiology 04/2009; 107(3):707-16. DOI:10.1111/j.1365-2672.2009.04220.x · 2.39 Impact Factor