Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1.

Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2008; 105(18):6584-9. DOI: 10.1073/pnas.0802785105
Source: PubMed

ABSTRACT Mad1, a member of the Myc/Max/Mad family, suppresses Myc-mediated transcriptional activity by competing with Myc for heterodimerization with its obligatory partner, Max. The expression of Mad1 suppresses Myc-mediated cell proliferation and transformation. The levels of Mad1 protein are generally low in many human cancers, and Mad1 protein has a very short half-life. However, the mechanism that regulates the turnover of Mad1 protein is poorly understood. In this study, we showed that Mad1 is a substrate of p90 ribosomal kinase (RSK) and p70 S6 kinase (S6K). Both RSK and S6K phosphorylate serine 145 of Mad1 upon serum or insulin stimulation. Ser-145 phosphorylation of Mad1 accelerates the ubiquitination and degradation of Mad1 through the 26S proteasome pathway, which in turn promotes the transcriptional activity of Myc. Our study provides a direct link between the growth factor signaling pathways regulated by PI3 kinase/Akt and MAP kinases with Myc-mediated transcription.


Available from: John Blenis, Sep 22, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Splenic transitional B-cells (T1 and T2) are selected to avoid self-reactivity and to safeguard against autoimmunity, then differentiate into mature follicular (FO-I and FO-II) and marginal zone (MZ) subsets. Transcriptomic analysis by RNA-seq of the five B-cell subsets revealed T1 cell signature genes included RAG suggesting a potential for receptor revision. T1 to T2 B-cell differentiation was marked by a switch from Myb to Myc, increased expression of the PI3K adapter DAP10 and MHC class II. FO-II may be an intermediate in FO-I differentiation and may also become MZ B-cells as suggested by principle component analysis. MZ B-cells possessed the most distinct transcriptome including down-regulation of CD45 phosphatase-associated protein (CD45-AP/PTPRC-AP), as well as upregulation of IL-9R and innate molecules TLR3, TLR7, and bactericidal Perforin-2 (MPEG1). Among the endosomal TLRs, stimulation via TLR3 further enhanced Perforin-2 expression exclusively in MZ B-cells. Using gene-deleted and overexpressing transgenic mice we show that IL-9/IL-9R interaction resulted in rapid activation of STAT1, 3, and 5, primarily in MZ B-cells. Importantly, CD45-AP mutant mice had reduced transitional and increased mature MZ and FO B-cells, suggesting that it prevents premature entry of transitional B-cells to the mature B-cell pool or their survival and proliferation. Together, these findings suggest, developmental plasticity among splenic B-cell subsets, potential for receptor revision in peripheral tolerance whereas enhanced metabolism coincides with T2 to mature B-cell differentiation. Further, unique core transcriptional signatures in MZ B-cells may control their innate features.
    Frontiers in Immunology 02/2015; 6:30. DOI:10.3389/fimmu.2015.00030
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The MYC family of proteins play essential roles in embryonic development and in oncogenesis. Efforts over the past 30years to define the transcriptional activities of MYC and how MYC functions to promote proliferation have produced evolving models of MYC function. One picture that has emerged of MYC and its partner protein MAX is of a transcription factor complex with a seemingly unique ability to stimulate the transcription of genes that are epigenetically poised for transcription and to amplify the transcription of actively transcribed genes. During lymphocyte activation, MYC is upregulated and stimulates a pro-proliferative program in part through the upregulation of a wide variety of metabolic effector genes that facilitate cell growth and cell cycle progression. MYC upregulation simultaneously sensitizes cells to apoptosis and activated lymphocytes and lymphoma cells have prosurvival attributes that allow MYC-driven proliferation to prevail. For example, the MAX-interacting protein MNT is upregulated in activated lymphocytes and was found to protect lymphocytes from MYC-dependent apoptosis. Here we review the activities of MYC, MNT and other MAX interacting proteins in the setting of T and B cell activation and oncogenesis. Myc proteins in cell biology and pathology.
    Biochimica et Biophysica Acta 04/2014; 1849(5). DOI:10.1016/j.bbagrm.2014.04.004 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Paraganglioma and pheochromocytoma (PGL/PCC) are tumours of neural crest origin that can present along a clinical spectrum ranging from apparently sporadic, isolated tumours to a more complex phenotype of one or multiple tumours in the context of other clinical features and family history suggestive of a defined hereditary syndrome. Genetic testing for hereditary PGL/PCC can help to confirm a genetic diagnosis for sporadic and syndromic cases. Informative genetic testing serves to clarify future risks for the patient and family members. Genetic discovery in the last decade has identified new PGL/PCC susceptibility loci. We summarize a contemporary approach adopted in our programme for genetic evaluation, testing and prospective management involving biochemical monitoring and imaging for hereditary PGL/PCC. A clinical vignette is presented to illustrate our practice. Current estimates that up to 40% of PGL/PCC are associated with germline mutations have implications for genetic testing recommendations. Prospective management of patients with defined hereditary susceptibility is based on established guidelines for well characterized syndromes. Management of tumour risk for rare syndromes, newly defined genetic associations and undefined genetic susceptibility in the setting of significant family history presents a challenge. Sustained discovery of new PGL/PCC genes underscores the need for a practice of continued genetic evaluation for patients with uninformative results. All patients with PGL/PCC should undergo genetic testing to identify potential hereditary tumour susceptibility.
    Current opinion in endocrinology, diabetes, and obesity 04/2014; 21(3). DOI:10.1097/MED.0000000000000059 · 3.77 Impact Factor