Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia

University Hospital of Ulm, Ulm, Germany.
New England Journal of Medicine (Impact Factor: 54.42). 06/2008; 358(18):1909-18. DOI: 10.1056/NEJMoa074306
Source: PubMed

ABSTRACT Mutations occur in several genes in cytogenetically normal acute myeloid leukemia (AML) cells: the nucleophosmin gene (NPM1), the fms-related tyrosine kinase 3 gene (FLT3), the CCAAT/enhancer binding protein alpha gene (CEPBA), the myeloid-lymphoid or mixed-lineage leukemia gene (MLL), and the neuroblastoma RAS viral oncogene homolog (NRAS). We evaluated the associations of these mutations with clinical outcomes in patients.
We compared the mutational status of the NPM1, FLT3, CEBPA, MLL, and NRAS genes in leukemia cells with the clinical outcome in 872 adults younger than 60 years of age with cytogenetically normal AML. Patients had been entered into one of four trials of therapy for AML. In each study, patients with an HLA-matched related donor were assigned to undergo stem-cell transplantation.
A total of 53% of patients had NPM1 mutations, 31% had FLT3 internal tandem duplications (ITDs), 11% had FLT3 tyrosine kinase-domain mutations, 13% had CEBPA mutations, 7% had MLL partial tandem duplications (PTDs), and 13% had NRAS mutations. The overall complete-remission rate was 77%. The genotype of mutant NPM1 without FLT3-ITD, the mutant CEBPA genotype, and younger age were each significantly associated with complete remission. Of the 663 patients who received postremission therapy, 150 underwent hematopoietic stem-cell transplantation from an HLA-matched related donor. Significant associations were found between the risk of relapse or the risk of death during complete remission and the leukemia genotype of mutant NPM1 without FLT3-ITD (hazard ratio, 0.44; 95% confidence interval [CI], 0.32 to 0.61), the mutant CEBPA genotype (hazard ratio, 0.48; 95% CI, 0.30 to 0.75), and the MLL-PTD genotype (hazard ratio, 1.56; 95% CI, 1.00 to 2.43), as well as receipt of a transplant from an HLA-matched related donor (hazard ratio, 0.60; 95% CI, 0.44 to 0.82). The benefit of the transplant was limited to the subgroup of patients with the prognostically adverse genotype FLT3-ITD or the genotype consisting of wild-type NPM1 and CEBPA without FLT3-ITD.
Genotypes defined by the mutational status of NPM1, FLT3, CEBPA, and MLL are associated with the outcome of treatment for patients with cytogenetically normal AML.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute Myeloid Leukemia (AML) is characterized by various cytogenetic and molecular abnormalities. Detection of these abnormalities is important in the risk-classification of patients but requires laborious experimentation. Various studies showed that gene expression profiles (GEP), and the gene signatures derived from GEP, can be used for the prediction of subtypes in AML. Similarly, successful prediction was also achieved by exploiting DNA-methylation profiles (DMP). There are, however, no studies that compared classification accuracy and performance between GEP and DMP, neither are there studies that integrated both types of data to determine whether predictive power can be improved. Here, we used 344 well-characterized AML samples for which both gene expression and DNA-methylation profiles are available. We created three different classification strategies including early, late and no integration of these datasets and used them to predict AML subtypes using a logistic regression model with Lasso regularization. We illustrate that both gene expression and DNA-methylation profiles contain distinct patterns that contribute to discriminating AML subtypes and that an integration strategy can exploit these patterns to achieve synergy between both data types. We show that concatenation of features from both data sets, i.e. early integration, improves the predictive power compared to classifiers trained on GEP or DMP alone. A more sophisticated strategy, i.e. the late integration strategy, employs a two-layer classifier which outperforms the early integration strategy. We demonstrate that prediction of known cytogenetic and molecular abnormalities in AML can be further improved by integrating GEP and DMP profiles.
    BMC Bioinformatics 02/2015; 16 Suppl 4:S5. DOI:10.1186/1471-2105-16-S4-S5 · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is limited information on a special subtype of Acute myeloid leukemia (AML) characterized by >20% myeloblasts and >20% abnormal promyelocytes in bone marrow and peripheral blood. The objective of the present investigation was to explore the clinical and laboratory features of seven patients with AML-M2/M3. We retrospectively assessed cell morphology, cytochemistry, immunophenotype, cytogenetics, and clinical features of seven patients with this rare subtype of AML. All seven cases had thrombocytopenia, coagulation abnormalities, >20% myeloblasts and abnormal promyelocytes. The PML/RARα fusion gene was present in six patients and two patients presented a mixed PML/RARα and AML1/ETO genotype. Five cases achieved CR and two cases did not achieve remission and one case transform into AML-M2 after CR1. The clinical and laboratory features of seven patients with AML-M2/M3 are demonstrated in the present study, providing information on the FAB sub-classification.
    Cancer Cell International 12/2014; 14(1):111. DOI:10.1186/s12935-014-0111-y · 1.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, research in molecular genetics has been instrumental in deciphering the molecular heterogeneity of acute myeloid leukemia (AML), in particular the subset of patients with "intermediate-risk" cytogenetics. However, at present, only the markers NPM1, CEBPA, and FLT3 have entered clinical practice. Treatment of intermediate-risk AML patients eligible for intensive therapy has not changed substantially. The "3 + 7" induction therapy still represents the standard of care. The addition of the immunoconjugate gemtuzumab ozogamicin to therapy has been shown to improve outcome; however, the drug is not approved for this use. A common standard for postremission therapy is the administration of repeated cycles of intermediate- to high-dose cytarabine. Allogeneic stem cell transplantation may offer a survival benefit for many patients with intermediate-risk AML. Patients are best selected based on the genetic profile of the leukemia cells and the risk associated with the transplantation itself. A myriad of novel agents targeting mutant leukemia drivers or deregulated pathways are in clinical development. In the past, many novel compounds have not met expectations; nonetheless, with the rapid developments in comprehensive molecular profiling and new drug design, there is the prospect of personalizing therapy and improving patient outcome. © 2014 by The American Society of Hematology. All rights reserved.

Full-text (2 Sources)

Available from
Jun 1, 2014