Article

A comparative method for studying adaptation to a randomly evolving environment.

Center for Evolutionary and Ecological Synthesis, Department of Biology, University of Oslo, PB 1066, Blindern, 0316 Oslo, Norway.
Evolution (Impact Factor: 4.66). 07/2008; 62(8):1965-77. DOI: 10.1111/j.1558-5646.2008.00412.x
Source: PubMed

ABSTRACT Most phylogenetic comparative methods used for testing adaptive hypotheses make evolutionary assumptions that are not compatible with evolution toward an optimal state. As a consequence they do not correct for maladaptation. The "evolutionary regression" that is returned is more shallow than the optimal relationship between the trait and environment. We show how both evolutionary and optimal regressions, as well as phylogenetic inertia, can be estimated jointly by a comparative method built around an Ornstein-Uhlenbeck model of adaptive evolution. The method considers a single trait adapting to an optimum that is influenced by one or more continuous, randomly changing predictor variables.

0 Bookmarks
 · 
136 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primate brain transcriptome comparisons within the last 12 years have yielded interesting but contradictory observations on how the transcriptome evolves, and its adaptive role in human cognitive evolution. Since the human-chimpanzee common ancestor, the human prefrontal cortex transcriptome seems to have evolved more than that of the chimpanzee. But at the same time, most expression differences among species, especially those observed in adults, appear as consequences of neutral evolution at cis-regulatory sites. Adaptive expression changes in the human brain may be rare events involving timing shifts, or heterochrony, in specific neurodevelopmental processes. Disentangling adaptive and neutral expression changes, and associating these with human-specific features of the brain require improved methods, comparisons across more species, and further work on comparative development.
    Current Opinion in Genetics & Development 12/2014; 29:110–119. · 8.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We consider a branching particle system where particles reproduce according to the pure birth Yule process with the birth rate L, conditioned on the observed number of particles to be equal n. Particles are assumed to move independently on the real line according to the Brownian motion with the local variance s2. In this paper we treat $n$ particles as a sample of related species. The spatial Brownian motion of a particle describes the development of a trait value of interest (e.g. log-body-size). We propose an unbiased estimator Rn2 of the evolutionary rate r2=s2/L. The estimator Rn2 is proportional to the sample variance Sn2 computed from n trait values. We find an approximate formula for the standard error of Rn2 based on a neat asymptotic relation for the variance of Sn2.
    Journal of theoretical biology. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Morphological, lineage and ecological diversity can vary substantially even among closely related lineages. Factors that influence morphological diversification, especially in functionally relevant traits, can help to explain the modern distribution of disparity across phylogenies and communities. Multivariate axes of feeding functional morphology from 75 species of Neotropical cichlid and a stepwise-AIC algorithm were used to estimate the adaptive landscape of functional morphospace in Cichlinae. Adaptive landscape complexity and convergence, as well as the functional diversity of Cichlinae, were compared with expectations under null evolutionary models. Neotropical cichlid feeding function varied primarily between traits associated with ram feeding vs. suction feeding/biting and secondarily with oral jaw muscle size and pharyngeal crushing capacity. The number of changes in selective regimes and the amount of convergence between lineages was higher than expected under a null model of evolution, but convergence was not higher than expected under a similarly complex adaptive landscape. Functional disparity was compatible with an adaptive landscape model, whereas the distribution of evolutionary change through morphospace corresponded with a process of evolution towards a single adaptive peak. The continentally distributed Neotropical cichlids have evolved relatively rapidly towards a number of adaptive peaks in functional trait space. Selection in Cichlinae functional morphospace is more complex than expected under null evolutionary models. The complexity of selective constraints in feeding morphology has likely been a significant contributor to the diversity of feeding ecology in this clade.
    Journal of Evolutionary Biology 10/2014; · 3.48 Impact Factor