HIV-induced changes in T cell signaling pathways.

Division of Experimental Medicine, University of California, San Francisco, CA 94110, USA.
The Journal of Immunology (Impact Factor: 5.36). 06/2008; 180(10):6490-500. DOI: 10.4049/jimmunol.180.10.6490
Source: PubMed

ABSTRACT Infection with HIV usually results in chronic activation of the immune system, with profound quantitative and qualitative changes in the T cell compartment. To better understand the mechanistic basis for T cell dysfunction and to discern whether such mechanisms are reversed after effective antiviral treatment, we analyzed changes in signaling pathways of human CD4(+) and CD8(+) T cells from 57 HIV-infected subjects in varying stages of disease progression and treatment, including long-term nonprogressors, progressors, and chronically infected subjects provided effective antiretroviral therapy (responders). A previously described PhosFlow method was adapted and optimized so that protein phosphorylation could be visualized in phenotypically defined subpopulations of CD4(+) and CD8(+) T cells (naive, memory, and effector) by flow cytometry. T cell signaling induced by TCR cross-linking, IL-2, or PMA/ionomycin was found to be blunted within all T cell subpopulations in those with progressive HIV disease compared with long-term nonprogressors and responders. Although alterations in cellular signaling correlated with levels of basal phosphorylation, viral load, and/or expression of programmed death-1, it was the level of basal phosphorylation that appeared to be the factor most dominantly associated with impaired signaling. Notably, provision of effective antiretroviral therapy was associated with a normalization of both basal phosphorylation levels and T cell signaling. These data, in aggregate, suggest that generalized dysfunction of the T cell compartment during progressive HIV disease may be in part dependent upon an increased basal level of phosphorylation, which itself may be due to the heightened state of immune activation found in advanced disease.

Download full-text


Available from: Marc Schweneker, Aug 04, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progressive loss of T cell functionality is a hallmark of chronic infection with human immunodeficiency virus 1 (HIV-1). We have identified a novel population of dysfunctional T cells marked by surface expression of the glycoprotein Tim-3. The frequency of this population was increased in HIV-1-infected individuals to a mean of 49.4 +/- SD 12.9% of CD8(+) T cells expressing Tim-3 in HIV-1-infected chronic progressors versus 28.5 +/- 6.8% in HIV-1-uninfected individuals. Levels of Tim-3 expression on T cells from HIV-1-infected inviduals correlated positively with HIV-1 viral load and CD38 expression and inversely with CD4(+) T cell count. In progressive HIV-1 infection, Tim-3 expression was up-regulated on HIV-1-specific CD8(+) T cells. Tim-3-expressing T cells failed to produce cytokine or proliferate in response to antigen and exhibited impaired Stat5, Erk1/2, and p38 signaling. Blocking the Tim-3 signaling pathway restored proliferation and enhanced cytokine production in HIV-1-specific T cells. Thus, Tim-3 represents a novel target for the therapeutic reversal of HIV-1-associated T cell dysfunction.
    Journal of Experimental Medicine 12/2008; 205(12):2763-79. DOI:10.1084/jem.20081398 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection of humans by the human immunodeficiency virus (HIV) causes a progressive, multifactorial impairment of the immune system eventually leading to the acquired immunodeficiency syndrome (AIDS). No cure or vaccine exists yet against HIV infection. More worrisome is the fact that despite having identified HIV as the cause of the AIDS, we still do not understand what pathogenic mechanisms lead to the debacle of the immune system. In this review we consider the extent and the limits of our knowledge of HIV pathogenesis, and how this knowledge may be used to design preventive and therapeutic approaches.
    Journal of Internal Medicine 02/2009; 265(1):78-96. DOI:10.1111/j.1365-2796.2008.02043.x · 5.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus (HIV) persists in a latent form in infected individuals treated effectively with highly active antiretroviral therapy (HAART). In part, these latent proviruses account for the rebound in viral replication observed after treatment interruption. A major therapeutic challenge is to purge this reservoir. In this study, we demonstrate that suberoylanilide hydroxamic acid (SAHA) reactivates HIV from latency in chronically infected cell lines and primary cells. Indeed, P-TEFb, a critical transcription cofactor for HIV, is released and then recruited to the viral promoter upon stimulation with SAHA. The phosphatidylinositol 3-kinase/Akt pathway is involved in the initiation of these events. Using flow cytometry-based single cell analysis of protein phosphorylation, we demonstrate that SAHA activates this pathway in several subpopulations of T cells, including memory T cells that are the major viral reservoir in peripheral blood. Importantly, SAHA activates HIV replication in peripheral blood mononuclear cells from individuals treated effectively with HAART. Thus SAHA, which is a Food and Drug Administration-approved drug, might be considered to accelerate the decay of the latent reservoir in HAART-treated infected humans.
    Journal of Biological Chemistry 02/2009; 284(11):6782-9. DOI:10.1074/jbc.M807898200 · 4.57 Impact Factor
Show more