Article

HIV-induced changes in T cell signaling pathways.

Division of Experimental Medicine, University of California, San Francisco, CA 94110, USA.
The Journal of Immunology (Impact Factor: 5.36). 06/2008; 180(10):6490-500. DOI: 10.4049/jimmunol.180.10.6490
Source: PubMed

ABSTRACT Infection with HIV usually results in chronic activation of the immune system, with profound quantitative and qualitative changes in the T cell compartment. To better understand the mechanistic basis for T cell dysfunction and to discern whether such mechanisms are reversed after effective antiviral treatment, we analyzed changes in signaling pathways of human CD4(+) and CD8(+) T cells from 57 HIV-infected subjects in varying stages of disease progression and treatment, including long-term nonprogressors, progressors, and chronically infected subjects provided effective antiretroviral therapy (responders). A previously described PhosFlow method was adapted and optimized so that protein phosphorylation could be visualized in phenotypically defined subpopulations of CD4(+) and CD8(+) T cells (naive, memory, and effector) by flow cytometry. T cell signaling induced by TCR cross-linking, IL-2, or PMA/ionomycin was found to be blunted within all T cell subpopulations in those with progressive HIV disease compared with long-term nonprogressors and responders. Although alterations in cellular signaling correlated with levels of basal phosphorylation, viral load, and/or expression of programmed death-1, it was the level of basal phosphorylation that appeared to be the factor most dominantly associated with impaired signaling. Notably, provision of effective antiretroviral therapy was associated with a normalization of both basal phosphorylation levels and T cell signaling. These data, in aggregate, suggest that generalized dysfunction of the T cell compartment during progressive HIV disease may be in part dependent upon an increased basal level of phosphorylation, which itself may be due to the heightened state of immune activation found in advanced disease.

0 Bookmarks
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV infection is characterized by several immune dysfunctions of both CD8 and CD4 T cells as hyperactivation, impairment of functionality and expansion of memory T cells. CD8 T-cell dysfunctions have been associated with increased expression of T-bet, Eomesdermin and pro-inflammatory cytokines, and with down-regulation of CD127. The HIV-1 Tat protein, which is released by infected cells and detected in tissues of HIV-positive individuals, is known to contribute to the dysregulation of CD4 T cells; however, its effects on CD8 T cells have not been investigated. Thus, in this study, we sought to address whether Tat may affect CD8 T-cell functionality and programming.
    AIDS (London, England) 05/2014; · 6.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methods to detect intracellular kinase signaling intermediates by flow cytometry have been recently developed. Termed "phospho-flow," these methods employ fluorescence-conjugated monoclonal antibodies that recognize phosphorylated epitopes of intracellular kinases, and may be combined with surface phenotypic markers to observe changes in kinase pathways by cellular subset. Effector functions, like cytokine production, are processes intrinsically linked to intracellular signaling and kinase activity within each cell. Methodologies that would simultaneously detect changes to signaling pathways as well as effector responses at the single-cell level would allow for mapping of the functional consequences induced by signaling pathway modifications. However, there are challenges to developing such a combined protocol, relating to the different kinetics of rapid signaling events and the more prolonged time required to induce and observe cytokine responses. In this report, we describe the development of an assay that accommodates differences in protocol conditions and response kinetics, merging phospho-flow cytometry, and intracellular cytokine staining methods into a single experimental protocol. We examined intracellular ERK1/2 phosphorylation and IFN-γ production by CD4+ and CD8+ T cells upon polyclonal stimulation with PMA and ionomycin, while monitoring expression of the cytolytic molecule perforin and the T cell activation marker CD38. We present a method that allows observation of kinase phosphorylation and cytokine production within the same cell after stimuli, while maintaining a stable cellular phenotype. Monitoring of signaling and effector functions in distinct immune subsets provides a platform to investigate and relate intracellular kinase signaling activity to immune cell effector function and phenotype in disease states. © 2014 International Society for Advancement of Cytometry.
    Cytometry Part A 01/2014; · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis B is considered to be a worldwide public health problem. An immunosuppressor microenvironment has been proposed to contribute to viral persistence during chronic disease. Understanding the intracellular signaling cascade in T-cells from HBV-infected patients, will contribute to unravel the mechanisms that control the development of immune response during hepatitis B. We analyze lipid rafts formation and early activation signals in chronic HBV infected patients, compared to naturally immune subjects (NIS). Patients show: (1) diminished GM1 clustering, (2) A deficient lipid rafts recruitment of CD3ζ/ZAP-70/Grb2, and (3) these proteins do not merge with GM1 within the lipid rafts. Finally, immunoprecipitation assays proved that ZAP-70 does not associate to CD3ζ. These results show for the first time, defects regarding early key events in T-cell activation, in chronically infected HBV patients, which may contribute not only to understand HBV immune tolerance, but to reveal new potential therapeutic targets to control the infection.
    Cellular Immunology 07/2013; 284(1-2):9-19. · 1.87 Impact Factor

Full-text (2 Sources)

Download
60 Downloads
Available from
Jun 1, 2014