HIV-induced changes in T cell signaling pathways

Division of Experimental Medicine, University of California, San Francisco, CA 94110, USA.
The Journal of Immunology (Impact Factor: 4.92). 06/2008; 180(10):6490-500. DOI: 10.4049/jimmunol.180.10.6490
Source: PubMed


Infection with HIV usually results in chronic activation of the immune system, with profound quantitative and qualitative changes in the T cell compartment. To better understand the mechanistic basis for T cell dysfunction and to discern whether such mechanisms are reversed after effective antiviral treatment, we analyzed changes in signaling pathways of human CD4(+) and CD8(+) T cells from 57 HIV-infected subjects in varying stages of disease progression and treatment, including long-term nonprogressors, progressors, and chronically infected subjects provided effective antiretroviral therapy (responders). A previously described PhosFlow method was adapted and optimized so that protein phosphorylation could be visualized in phenotypically defined subpopulations of CD4(+) and CD8(+) T cells (naive, memory, and effector) by flow cytometry. T cell signaling induced by TCR cross-linking, IL-2, or PMA/ionomycin was found to be blunted within all T cell subpopulations in those with progressive HIV disease compared with long-term nonprogressors and responders. Although alterations in cellular signaling correlated with levels of basal phosphorylation, viral load, and/or expression of programmed death-1, it was the level of basal phosphorylation that appeared to be the factor most dominantly associated with impaired signaling. Notably, provision of effective antiretroviral therapy was associated with a normalization of both basal phosphorylation levels and T cell signaling. These data, in aggregate, suggest that generalized dysfunction of the T cell compartment during progressive HIV disease may be in part dependent upon an increased basal level of phosphorylation, which itself may be due to the heightened state of immune activation found in advanced disease.

Download full-text


Available from: Marc Schweneker, Oct 10, 2015
17 Reads
  • Source
    • "Immune activation is a well-known predictor of disease progression in HIV-infection [23], [24] accompanied by immunological senescence and apoptosis [25], [26]. In controllers, lower immune activation senescence and apoptosis were found in both the CD4+ and CD8+ cell compartement in accordance with multiple previous studies [10], [19], [27]–[32]. Due to the predictive nature of immune activation it seems reasonable to consider the low immune activation in controllers to be a contributor to lack of progression. Another way to assess cell turnover is to determine telomere length. "
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-infected controllers control viral replication and maintain normal CD4+ T cell counts. Long Term Non-Progressors (LTNP) also maintain normal CD4+ T cell counts, but have on-going viral replication. We hypothesized that different immunological mechanisms are responsible for preserved CD4+ T cell counts in controllers and LTNP. 25 HIV-infected controllers and 14 LTNP were included in this cross-sectional study. For comparison, 25 progressors and 34 healthy controls were included. Production and destruction of T cells were addressed by determination of T cell receptor excision circles (TREC), recent thymic emigrants, naïve cells, immune activation, senescence and apoptosis. Furthermore, telomere length was determined, and the amount of lymphoid tissue in tonsil biopsies was quantified. Controllers presented with partly preserved thymic output, preserved expression of the IL-7 receptor and IL-7 receptor density, and lower levels of destruction of cells than progressors resembling HIV-negative healthy controls. In contrast, LTNP appeared much like progressors, and different from controllers in immune activation, senescence, and apoptosis. Interestingly, CD8+ RTE, TREC and telomere length were partly preserved. Finally, both controllers and LTNP displayed decreased amounts of lymphoid tissue compared to healthy controls. Controllers presented with an immunological profile different from LTNP. While controllers resembled healthy controls, LTNP were similar to progressors, suggesting different immunological mechanisms to be responsible for preserved CD4+ T cell counts in LTNP and controllers. However, both controllers and LTNP presented with reduced amounts of lymphoid tissue despite preserved CD4+ T cell counts, indicating HIV to cause damage even in non-progressors.
    PLoS ONE 05/2013; 8(5):e63744. DOI:10.1371/journal.pone.0063744 · 3.23 Impact Factor
  • Source
    • "HIV-1 acquisition and disease progression are associated with immune activation _[52], [65] and dysregulation of expression and responsiveness of viral sensors [66], [67], [68], [69], [70]. Specifically, we recently showed that chronic untreated HIV-1 infection was associated with aberrant expression and responsiveness of TLR2, 3, 4, 6, 7/8 in PBMCs [66], [67]_. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Elafin (E) and its precursor trappin-2 (Tr) are alarm antiproteases with antimicrobial and immunomodulatory activities. Tr and E (Tr/E) have been associated with HIV-1 resistance. We recently showed that Tr/E reduced IL-8 secretion and NF-κB activation in response to a mimic of viral dsRNA and contributed to anti-HIV activity of cervicovaginal lavage fluid (CVL) of HIV-resistant (HIV-R) commercial sex workers (CSWs). Additionally, Tr, and more so E, were found to inhibit attachment/entry and transcytosis of HIV-1 in human endometrial HEC-1A cells, acting through virus or cells. Given their immunomodulatory activity, we hypothesized that Tr/E could exert anti-HIV-1 activity at multiple levels. Here, using tagged and untagged Tr/E proteins, we comparatively evaluated their protease inhibitory, anti-HIV-1, and immunomodulatory activities, and cellular distribution. E appeared to function as an autocrine/paracrine factor in HEC-1A cells, and anti-HIV-1 activity of E depended on its unmodified N-terminus and altered cellular innate activation, but not its antiprotease activity. Specifically, exogenously added N-terminus-unmodified E was able to enter the nucleus and to reduce viral attachment/entry and transcytosis, preferentially affecting R5-HIV-1(ADA), but not X4-HIV-1(IIIB). Further, anti-HIV-1 activity of E was associated with significantly decreased HIV-1-triggered IL-8 release, attenuated NF-κB/p65 nuclear translocation, and significantly modulated mRNA expression of innate sensors TLR3 and RIG-I in HEC-1A cells. Most importantly, we found that elevated Tr/E in CVLs of HIV-R CSWs were associated with lower mRNA levels of TLRs 2, 3, 4 and RIG-I in the genital ECs from this cohort, suggesting a link between Tr/E, HIV-1 resistance and modulated innate viral recognition in the female genital mucosa. Collectively, our data indicate that unmodified N-terminus is critical for intranuclear localization and anti-HIV-1 activity of E. We also propose that E-mediated altered cellular innate activation most likely contributes to the HIV-R phenotype of these subjects.
    PLoS ONE 12/2012; 7(12):e52738. DOI:10.1371/journal.pone.0052738 · 3.23 Impact Factor
  • Source
    • "Senescent cells in EC and progressors have been examined in a single study, and comparable levels were found [8]. In contrast, in a study of non-progressors with unknown viral load the level of apoptosis was found to be similar to healthy controls and lower than in progressors [89], and others have reported lower levels of apoptosis in VC compared to progressors [90], both supporting the idea of a lower turnover as contributing to non-progression. However, low turnover could also simply reflect a lower IA. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In the early days of the HIV epidemic, it was observed that a minority of the infected patients did not progress to AIDS or death and maintained stable CD4+ cell counts. As the technique for measuring viral load became available it was evident that some of these nonprogressors in addition to preserved CD4+ cell counts had very low or even undetectable viral replication. They were therefore termed controllers, while those with viral replication were termed long-term nonprogressors (LTNPs). Genetics and virology play a role in nonprogression, but does not provide a full explanation. Therefore, host differences in the immunological response have been proposed. Moreover, the immunological response can be divided into an immune homeostasis resistant to HIV and an immune response leading to viral control. Thus, non-progression in LTNP and controllers may be due to different immunological mechanisms. Understanding the lack of disease progression and the different interactions between HIV and the immune system could ideally teach us how to develop a functional cure for HIV infection. Here we review immunological features of controllers and LTNP, highlighting differences and clinical implications.
    AIDS research and treatment 05/2012; 2012(4):161584. DOI:10.1155/2012/161584
Show more