Article

Photochemically Induced Dynamic Nuclear Polarization in a C450A Mutant of the LOV2 Domain of the Avena sativa Blue-Light Receptor Phototropin.

Technische Universität München, Lehrstuhl für Organische Chemie und Biochemie, Lichtenbergstrasse 4, 85747 Garching, Germany.
Journal of the American Chemical Society (Impact Factor: 10.68). 07/2008; 130(22):7166. DOI: 10.1021/ja802468f
Source: PubMed

ABSTRACT Phototropin is a blue-light receptor involved in the phototropic response of higher plants. The photoreceptor comprises a protein kinase domain and two structurally similar flavin-mononucleotide (FMN) binding domains designated LOV1 and LOV2. Blue-light irradiation of recombinant LOV2 domains induces the formation of a covalent adduct of the thiol group of a functional cysteine in the cofactor-binding pocket to C(4a) of the FMN. Cysteine-to-alanine mutants of LOV domains are unable to form that adduct but generate an FMN radical upon illumination. The recombinant C450A mutant of the LOV2 domain of Avena sativa phototropin was reconstituted with universally and site-selectively (13)C-labeled FMN and the (13)C NMR signals were unequivocally assigned. (13)C NMR spectra were acquired in darkness and under blue-light irradiation. The chemical shifts and the coupling patterns of the signals were not affected by irradiation. However, under blue-light exposure, exceptionally strong nuclear-spin polarization was developed in the resonances belonging to certain carbons of the FMN's isoalloxazine moiety. An enhancement of the NMR absorption was observed for the signals of C(5a), C(7), and C(9). NMR lines in emission were detected for the signals belonging to C(2), C(4), C(4a), C(6), C(8), and C(9a). The signal of C(10a) remained in absorption but was slightly attenuated. In contrast, the intensities of the NMR signals belonging to the carbons of the ribityl side chain of FMN were not affected by light. The observation of spin-polarized (13)C-nuclei in the NMR spectra of the mutant LOV2 domain is clear evidence for radical-pair intermediates in the reaction steps following optical sample excitation.

0 Bookmarks
 · 
51 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: An LED based illumination device for mechanistic studies on photochemical reactions by means of NMR spectroscopy is presented. The LEDs are directly switched by the NMR spectrometer with the help of a one-stage electronic circuit. This allows for continuous or alternatively pulsed operation of the LEDs. Continuous operation provides direct comparability with conditions in synthetic chemistry, in pulsed operation the short time light power can be enhanced ninefold. The LEDs are efficiently coupled to a 1000μm core optical fiber guiding the light into the spectrometer by simply bringing it in close contact to the fiber. The tip of the fiber is roughened by sandblasting and thus emits light in a uniform and efficient way over the full length of the receiver coil. The combination of these techniques tremendously increases the amount of light brought into the NMR sample and makes LEDs an easy, versatile and handy light source for the in situ illumination of NMR samples allowing even for single millisecond time resolved Photo-CIDNP spectroscopy.
    Journal of Magnetic Resonance 04/2013; 232C:39-44. · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hyoscyamus albus hairy roots with/without an exogenous gene (11 clones) were established by inoculation of Agrobacterium rhizogenes. All clones cultured under iron-deficient condition secreted riboflavin from the root tips into the culture medium and the productivity depended on the number and size of root tips among the clones. A decline of pH was observed before riboflavin production and root development. By studying effects of proton-pump inhibitors, medium acidification with external organic acid, and riboflavin addition upon pH change and riboflavin productivity, we indicate that riboflavin efflux is not directly connected to active pH reduction, and more significantly active riboflavin secretion occurs as a response to an internal requirement in H. albus hairy roots under iron deficiency.
    Plant Physiology and Biochemistry 05/2008; 46(4):452-60. · 2.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The blue light photoreceptor phototropin mediates crucial processes in plants leading to optimization of photosynthesis. Phototropin comprises two flavin mononucleotide-binding LOV (light-, oxygen-, or voltage-sensitive) domains. The LOV domains undergo a photocycle upon illumination, in which two intermediates have been detected by UV/Vis spectroscopy. The triplet excited state of flavin is formed and decays within a few microseconds into a photoadduct with an adjacent cysteine, which represents the signaling state of the LOV domain. For bond formation of the photoadduct, several reaction pathways have been proposed, but evidence for an intermediate at ambient conditions has not been found. Here, we performed nanosecond time-resolved UV/Vis spectroscopy on the phototropin-LOV1 domain from Chlamydomonas reinhardtii. We designed a flow cell which was used to efficiently replace the sample after each photoexcitation because the cycling time is in the order of hundreds of seconds. The comparison of difference spectra of the wild type with those of the C57S mutant that produces only the triplet excited state revealed the existence of an additional intermediate between the triplet and the adduct state. This intermediate exhibits spectral properties similar to a neutral flavin radical. This finding supports a reaction mechanism involving a neutral radical pair.
    Photochemistry and Photobiology 01/2011; 87(3):548-53. · 2.29 Impact Factor

Full-text (2 Sources)

View
5 Downloads
Available from
May 31, 2014