A p38-p65 transcription complex induced by endothelin-1 mediates signal transduction in cancer cells, Biochim

Institute of Pathology, University Hospital, Kerpernerstrasse, 50931 Koeln, Germany.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 10/2008; 1783(9):1613-22. DOI: 10.1016/j.bbamcr.2008.04.003
Source: PubMed


Endothelin-1 is a powerful mitogen for various tumor and non-tumor cells. Its signaling cascade induces the inflammatory NF-kappaB complex, leading to expression of a number of target genes. In this context, MAPK p38 has been regarded as a potential phosphate donor for the p65 subunit of NF-kappaB. In the present study in HeLa cells, we have found that ET-1 induced signalling activates the NF-kappaB transcription complex (TC) in the nucleus at 6 h specifically via ET-A - but not ET-B receptor. The TC contains p65, p38 (alpha and beta) - binding to the NLS of p65 in the cytoplasm - as well as p50, but no IkappaBalpha. Specific p38 inhibition by SB203580 or by siRNA interferes markedly with gene expression of several target genes. Complex formation occurs in the cytoplasm, and both transcription factors transmigrate as a complex in the nucleus. Overexpression of p38, treatment with Chrysin, MG132, or dimethylformamide shows dependence of TC on p38 as partner. In other tumor cells lines studied, ET-1 activates TC, with p38 as an important complex partner of p65. TC-induction by ET-1 contains about twice the amount of p38 than by TNFalpha. Thus, p38 may be an additional therapeutic target to control inflammatory gene expression in tumor cells.

Download full-text


Available from: Jochen W U Fries,
  • Source
    • "As an important organelle in the cells, mitochondria not only play a central role in calcium and energy metabolism [7], but also are essential components of the apoptotic machinery and by themselves are very important sites of reactive ROS "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dracocephalum kotschyi Boiss. (Labiatae) is a native Iranian medicinal plant which has been used in combination with Peganum harmala L. as a remedy for many forms of human cancer especially leukemia and gastrointestinal malignancies. Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. In this investigation HCC was induced by a single intraperitoneal injection of diethylnitrosamine (DEN) in corn oil at 200 mg/kg body weight to rats. Two weeks after DEN administration, cancer development was promoted with dietary 2-acetylaminofluorene (2-AAF) (0.02%, w/w) for 2 weeks. Serum alpha-fetoprotein (AFP) concentration, serum alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) activities were also determined for confirmation of hepatocellular carcinoma induction. Then rat hepatocytes were isolated with collagen perfusion technique and tumoral hepatocytes were sorted by flow cytometry. Finally isolated mitochondria obtained from both tumoral and nontumoral hepatocytes were used for any probable toxic effect of Dracocephalum kotschyi ethanolic extract. Our results showed that D. kotschyi extract (250 µg/mL) induced reactive oxygen species (ROS) formation, mitochondrial membrane permeabilization (MMP), and mitochondrial swelling and cytochrome c release only in tumoral but not nontumoral hepatocyte. These findings propose Dracocephalum kotschyi as a promising candidate for future anticancer research.
    BioMed Research International 07/2014; 2014:892170. DOI:10.1155/2014/892170 · 1.58 Impact Factor
  • Source
    • "Western blot analysis was performed as previously described (Gerstung et al., 2007; von Brandenstein et al., 2011, 2008) For the Fig. 1. Expression level of ETS transcription factors in Caki-1 cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular senescence, leading to cell death through prevention of regular cell renewal, is associated with the upregulation of the tumor suppressor gene p16(INK4a). While this mechanism has been described as leading to progressive nephron loss, p16(INK4a) upregulation in renal cell carcinoma has been linked to a disease-specific improved patient survival rate. While in both conditions endothelin-1 is also upregulated, the signaling pathway connecting ET-1 to p16(INK4a) has not been characterized until this study. Cell culture, qRT-PCR, Western Blot, immunoprecipitation (IP), proximity ligation assay (PLA), and non-radioactive electrophoretic mobility shift assay (EMSA). In malignant renal proximal tumor cells (Caki-1), an activation of p16(INK4a) and p21(waf1/cip1) was observed. An increased expression of E-26 transformation-specific (ETS) transcription factors was detectable. Using specific antibodies, a complex formation between ETS1 and extracellular signal-regulated kinase-2 (ERK2) was shown. A further complex partner was Mxi2. EMSA with supershift analysis for ETS1 and Mxi2 indicated the involvement of both factors in the protein-DNA interaction. After specifically blocking the endothelin receptors, ETS1 expression was significantly downregulated. However, the endothelin B receptor dependent downregulation was stronger than that of the A receptor. In contrast, primary proximal tubule cells showed a nuclear decrease after ET-1 stimulation. This indicates that other ETS members may be involved in the observed p16(INK4a) upregulation (as described in the literature). ETS1, ERK2 and Mxi2 are important complex partners initiating increased p16(INK4a) and p21w(af1/cip1) activation in renal tumor cells.
    Life sciences 04/2012; 91(13-14):562-71. DOI:10.1016/j.lfs.2012.04.014 · 2.70 Impact Factor
  • Source
    • "Western blot analysis was performed as described in [1] [6]. For the analysis of the PKC α, p65, p38 (α/β) and β-actin antibodies from Santa Cruz were used and tested for specificity with Santa Cruz designed peptides. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelin-1 induced signaling is characterized by an early induction of a nuclear factor-kappa B p65/mitogen-activated phosphokinase p38 transcription complex via its A-receptor versus a late induction via diacylglycerol, and protein kinase C. A possible interaction between these two pathways and a potential function for protein kinase C in this context has not previously been elucidated. Here we report that in Caki-1 tumor cells, protein kinase C α is a part of the transcription complex. With importin α4 and α5 as chaperones, the transcription complex transmigrates into the nucleus. Protein kinase C α blocks the nuclear release of pri-microRNA 15a by direct binding shown by electrophoretic mobility shift assay and Duolink immune histology. The expression levels of miRNA 15a can be further manipulated by transfection of si-protein kinase C α, or an expression vector containing protein kinase C α or miRNA 15. The miRNA 15a regulation by protein kinase C α is detectable in different malignant human tumor cell lines (renal cell carcinoma, breast carcinoma, and melanoma). Furthermore, all three cell lines harbor both endothelin receptors (ETAR/ETBR). Specific blockage of each receptor leads to major reduction of miRNA 15a expression due to increased nuclear protein kinase C α translocation. We conclude that the nuclear binding of pri-microRNA 15a is a novel function of protein kinase C α, which plays an important role in endothelin-1 mediated signaling. Since several endothelin-sensitive, malignant tumor cell lines harbor this regulation, it could indicate a more general role in tumor biology.
    Biochimica et Biophysica Acta 06/2011; 1813(10):1793-802. DOI:10.1016/j.bbamcr.2011.06.006 · 4.66 Impact Factor
Show more