Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy

Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Laboratory Investigation (Impact Factor: 3.68). 08/2008; 88(7):694-721. DOI: 10.1038/labinvest.2008.27
Source: PubMed

ABSTRACT The search for the genomic sequences involved in human cancers can be greatly facilitated by maps of genomic imbalances identifying the involved chromosomal regions, particularly those that participate in the development of occult preneoplastic conditions that progress to clinically aggressive invasive cancer. The integration of such regions with human genome sequence variation may provide valuable clues about their overall structure and gene content. By extension, such knowledge may help us understand the underlying genetic components involved in the initiation and progression of these cancers. We describe the development of a genome-wide map of human bladder cancer that tracks its progression from in situ precursor conditions to invasive disease. Testing for allelic losses using a genome-wide panel of 787 microsatellite markers was performed on multiple DNA samples, extracted from the entire mucosal surface of the bladder and corresponding to normal urothelium, in situ preneoplastic lesions, and invasive carcinoma. Using this approach, we matched the clonal allelic losses in distinct chromosomal regions to specific phases of bladder neoplasia and produced a detailed genetic map of bladder cancer development. These analyses revealed three major waves of genetic changes associated with growth advantages of successive clones and reflecting a stepwise conversion of normal urothelial cells into cancer cells. The genetic changes map to six regions at 3q22-q24, 5q22-q31, 9q21-q22, 10q26, 13q14, and 17p13, which may represent critical hits driving the development of bladder cancer. Finally, we performed high-resolution mapping using single nucleotide polymorphism markers within one region on chromosome 13q14, containing the model tumor suppressor gene RB1, and defined a minimal deleted region associated with clonal expansion of in situ neoplasia. These analyses provided new insights on the involvement of several non-coding sequences mapping to the region and identified novel target genes, termed forerunner (FR) genes, involved in early phases of cancer development.

Download full-text


Available from: Ronald Alan Harris, Sep 28, 2015
46 Reads
  • Source
    • "The remaining 25% have a muscle-invasive cancer as the first lesion (Babjuk et al., 2013). The molecular events that lead to formation of field cancerization in urothelium (Majewski et al., 2008), disease progression, and muscle invasion are poorly understood, leaving few options for rational treatment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bladder cancer (or urothelial cell carcinoma [UCC]) is characterized by field disease (malignant alterations in surrounding mucosa) and frequent recurrences. Whole-genome, exome, and transcriptome sequencing of 38 tumors, including four metachronous tumor pairs and 20 superficial tumors, identified an APOBEC mutational signature in one-third. This was biased toward the sense strand, correlated with mean expression level, and clustered near breakpoints. A > G mutations were up to eight times more frequent on the sense strand (p < 0.002) in [ACG]AT contexts. The patient-specific APOBEC signature was negatively correlated to repair-gene expression and was not related to clinicopathological parameters. Mutations in gene families and single genes were related to tumor stage, and expression of chromatin modifiers correlated with survival. Evolutionary and subclonal analyses of early/late tumor pairs showed a unitary origin, and discrete tumor clones contained mutated cancer genes. The ancestral clones contained Pik3ca/Kdm6a mutations and may reflect the field-disease mutations shared among later tumors.
    Cell Reports 05/2014; 7(5). DOI:10.1016/j.celrep.2014.04.038 · 8.36 Impact Factor
  • Source
    • "Cytogenetic and traditional comparative genomic hybridization (CGH) studies of urothelial carcinoma (UC) have revealed several recurring chromosomal alterations [1], [2], [3]. Particularly frequent are losses of chromosome arms 9p and 9q, amplifications at 6p22, and deletions of the RB1 tumor suppressor gene on chromosome 13q [4], [5]. Array-based CGH (aCGH) studies have been instrumental in delineating genomic regions that are targeted by amplifications and deletions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Similar to other malignancies, urothelial carcinoma (UC) is characterized by specific recurrent chromosomal aberrations and gene mutations. However, the interconnection between specific genomic alterations, and how patterns of chromosomal alterations adhere to different molecular subgroups of UC, is less clear. We applied tiling resolution array CGH to 146 cases of UC and identified a number of regions harboring recurrent focal genomic amplifications and deletions. Several potential oncogenes were included in the amplified regions, including known oncogenes like E2F3, CCND1, and CCNE1, as well as new candidate genes, such as SETDB1 (1q21), and BCL2L1 (20q11). We next combined genome profiling with global gene expression, gene mutation, and protein expression data and identified two major genomic circuits operating in urothelial carcinoma. The first circuit was characterized by FGFR3 alterations, overexpression of CCND1, and 9q and CDKN2A deletions. The second circuit was defined by E3F3 amplifications and RB1 deletions, as well as gains of 5p, deletions at PTEN and 2q36, 16q, 20q, and elevated CDKN2A levels. TP53/MDM2 alterations were common for advanced tumors within the two circuits. Our data also suggest a possible RAS/RAF circuit. The tumors with worst prognosis showed a gene expression profile that indicated a keratinized phenotype. Taken together, our integrative approach revealed at least two separate networks of genomic alterations linked to the molecular diversity seen in UC, and that these circuits may reflect distinct pathways of tumor development.
    PLoS ONE 06/2012; 7(6):e38863. DOI:10.1371/journal.pone.0038863 · 3.23 Impact Factor
  • Source
    • "Clear documented examples of clonal expansion [3-6] demonstrate that there is interaction and competition between heterogeneous clones within a neoplasm and those clones may displace normal cells in a tissue. Although competition between heterogeneous cell types is a fundamental property of progression and therapeutic intervention [7-9], the mechanism of competition is incompletely understood and only a few studies [10-12] have attempted to directly quantify the dynamics of competition between normal and neoplastic cells [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolutionary dynamics between interacting heterogeneous cell types are fundamental properties of neoplastic progression but can be difficult to measure and quantify. Cancers are heterogeneous mixtures of mutant clones but the direct effect of interactions between these clones is rarely documented. The implicit goal of most preventive interventions is to bias competition in favor of normal cells over neoplastic cells. However, this is rarely explicitly tested. Here we have developed a cell culture competition model to allow for direct observation of the effect of chemopreventive or therapeutic agents on two interacting cell types. We have examined competition between normal and Barrett's esophagus cell lines, in the hopes of identifying a system that could screen for potential chemopreventive agents. One fluorescently-labeled normal squamous esophageal cell line (EPC2-hTERT) was grown in competition with one of four Barrett's esophagus cell lines (CP-A, CP-B, CP-C, CP-D) under varying conditions and the outcome of competition measured over 14 days by flow cytometry. We demonstrate that ascorbic acid (vitamin C) can help squamous cells outcompete Barrett's cells in this system. We are also able to show that ascorbic acid's boost to the relative fitness of squamous cells was increased in most cases by mimicking the pH conditions of gastrointestinal reflux in the lower esophagus. This model is able to integrate differential fitness effects on various cell types, allowing us to simultaneously capture effects on interacting cell types without having to perform separate experiments. This model system may be used to screen for new classes of cancer prevention agents designed to modulate the competition between normal and neoplastic cells.
    BMC Cancer 10/2011; 11(1):461. DOI:10.1186/1471-2407-11-461 · 3.36 Impact Factor
Show more