Herpes virus oncolytic therapy reverses tumor immune dysfunction and facilitates tumor antigen presentation.

Center for Research on Ovarian Cancer Early Detection and Cure, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Cancer biology & therapy (Impact Factor: 3.29). 06/2008; 7(8):1194-205. DOI: 10.4161/cbt.7.8.6216
Source: PubMed

ABSTRACT We have previously shown that intratumor administration of HSV-1716 (an ICP34.5 null mutant) resulted in significant reduction of tumor growth and a significant survival advantage in a murine model of ovarian cancer. Herewith we report that oncolytic HSV-1716 generates vaccination effects in the same model. Upon HSV-1716 infection, mouse ovarian tumor cells showed high levels of expression viral glycoproteins B and D and were highly phagocyted by dendritic cells (DCs). Interestingly, increased phagocytosis of tumor-infected cells by DCs was impaired by heparin, and anti-HSV glycoproteins B and D, indicating that viral infection enhances adhesive interactions between DCs and tumor apoptotic bodies. Moreover, HSV-1716 infected cells expressed high levels of heat shock proteins 70 and GRP94, molecules that have been reported to induce maturation of DCs, increase cross-presentation of antigens and promote antitumor immune response. After phagocytosis of tumor-infected cells, DCs acquired a mature status in vitro and in vivo, upregulated the expression of costimulatory molecule and increased migration towards MIP-3beta. Furthermore, HSV-1716 oncolytic treatment markedly reduced vascular endothelial growth factor (VEGF) levels in tumor-bearing animals thus abrogating tumor immunosuppressive milieu. These mechanisms may account for the highly enhanced antitumoral immune responses observed in HSV-1716 treated animals. Oncolytic treatment induced a significantly higher frequency of tumor-reactive IFNgamma producing cells, and induced a robust tumor infiltration by T cells. These results indicate that oncolytic therapy with HSV-1716 facilitates antitumor immune responses.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rhabdovirus Maraba has recently been characterized as a potent oncolytic virus. In the present study, we engineered an attenuated Maraba strain, defined as MG1, to express a melanoma-associated tumor antigen. Its ability to mount an antitumor immunity was evaluated in tumor-free and melanoma tumor-bearing mice. Alone, the MG1 vaccine appeared insufficient to prime detectable adaptive immunity against the tumor antigen. However, when used as a boosting vector in a heterologous prime-boost regimen, MG1 vaccine rapidly generated strong antigen-specific T-cell immune responses. Once applied for treating syngeneic murine melanoma tumors, our oncolytic prime-boost vaccination protocol involving Maraba MG1 dramatically extended median survival and allowed complete remission in more than 20% of the animals treated. This work describes Maraba virus MG1 as a potent vaccine vector for cancer immunotherapy displaying both oncolytic activity and a remarkable ability to boost adaptive antitumor immunity.Molecular Therapy (2013); doi:10.1038/mt.2013.249.
    Molecular Therapy 10/2013; · 7.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, the relevance of the tumor microenvironment (TME) in the progression of cancer has gained considerable attention. It has been shown that the TME is capable of inactivating various components of the immune system responsible for tumor clearance, thus favoring cancer cell growth and tumor metastasis. In particular, effects of the TME on antigen-presenting cells, such as dendritic cells (DCs) include rendering these cells unable to promote specific immune responses or transform them into suppressive cells capable of inducing regulatory T cells. In addition, under the influence of the TME, DCs can produce growth factors that induce neovascularization, therefore further contributing to tumor development. Interestingly, cancer-associated DCs harbor tumor antigens and thus have the potential to become anti-tumor vaccines in situ if properly reactivated. This perspective article provides an overview of the scientific background and experimental basis for reprograming cancer-associated DCs in situ to generate anti-tumor immune responses.
    Frontiers in Oncology 01/2014; 4:72.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant surveillance against possible relapse. Such an antigen-specific adaptive response begins when tumor-specific T cells become activated. T-cell activation requires two signals on antigen presenting cells (APCs): antigen presentation through major histocombatibility complex (MHC) molecules and co-stimulation. In the absence of one or both these signals, T cells remain inactivated or can even become tolerized. Cancer cells and their associated microenvironment strategically hinder the processing and presentation of tumor antigens and consequently prevent the development of anti-tumor immunity. Many studies, however, demonstrate that interventions that over-turn tumor-associated immune evasion mechanisms can establish anti-tumor immune responses of therapeutic potential. One such intervention is oncolytic virus (OV)-based anti-cancer therapy. Here, we discuss how OV-induced immunological events override tumor-associated antigen presentation impairment and promote appropriate T cell-APC interaction. Detailed understanding of this phenomenon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-cancer therapy by complementing its inherent oncolytic activities with desired anti-tumor immune responses.
    Frontiers in Oncology 01/2014; 4:77.

Full-text (2 Sources)

Available from
May 16, 2014

Similar Publications