Article

Gene Ontology annotations: what they mean and where they come from.

The Jackson Laboratory, Bar Harbor, ME, USA.
BMC Bioinformatics (Impact Factor: 2.67). 02/2008; 9 Suppl 5:S2. DOI: 10.1186/1471-2105-9-S5-S2
Source: DBLP

ABSTRACT To address the challenges of information integration and retrieval, the computational genomics community increasingly has come to rely on the methodology of creating annotations of scientific literature using terms from controlled structured vocabularies such as the Gene Ontology (GO). Here we address the question of what such annotations signify and of how they are created by working biologists. Our goal is to promote a better understanding of how the results of experiments are captured in annotations, in the hope that this will lead both to better representations of biological reality through annotation and ontology development and to more informed use of GO resources by experimental scientists.

1 Bookmark
 · 
158 Views
  • Source
    PLoS Computational Biology 11/2013; 9(11):e1003343. · 4.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Integration of open access, curated, high-quality information from multiple disciplines in the Life and Biomedical Sciences provides a holistic understanding of the domain. Additionally, the effective linking of diverse data sources can unearth hidden relationships and guide potential research strategies. However, given the lack of consistency between descriptors and identifiers used in different resources and the absence of a simple mechanism to link them, gathering and combining relevant, comprehensive information from diverse databases remains a challenge. The Open Pharmacological Concepts Triple Store (Open PHACTS) is an Innovative Medicines Initiative project that uses semantic web technology approaches to enable scientists to easily access and process data from multiple sources to solve real-world drug discovery problems. The project draws together sources of publicly-available pharmacological, physicochemical and biomolecular data, represents it in a stable infrastructure and provides well-defined information exploration and retrieval methods. Here, we highlight the utility of this platform in conjunction with workflow tools to solve pharmacological research questions that require interoperability between target, compound, and pathway data. Use cases presented herein cover 1) the comprehensive identification of chemical matter for a dopamine receptor drug discovery program 2) the identification of compounds active against all targets in the Epidermal growth factor receptor (ErbB) signaling pathway that have a relevance to disease and 3) the evaluation of established targets in the Vitamin D metabolism pathway to aid novel Vitamin D analogue design. The example workflows presented illustrate how the Open PHACTS Discovery Platform can be used to exploit existing knowledge and generate new hypotheses in the process of drug discovery.
    PLoS ONE 12/2014; 9(12):e115460. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Though the annotation of digital artifacts with metadata has a long history, the bulk of that work focuses on the association of single terms or concepts to single targets. As annotation efforts expand to capture more complex information, annotations will need to be able to refer to knowledge structures formally defined in terms of more atomic knowledge structures. Existing provenance efforts in the Semantic Web domain primarily focus on tracking provenance at the level of whole triples and do not provide enough detail to track how individual triple elements of annotations were derived from triple elements of other annotations. We present a task- and domain-independent ontological model for capturing annotations and their linkage to their denoted knowledge representations, which can be singular concepts or more complex sets of assertions. We have implemented this model as an extension of the Information Artifact Ontology in OWL and made it freely available, and we show how it can be integrated with several prominent annotation and provenance models. We present several application areas for the model, ranging from linguistic annotation of text to the annotation of disease-associations in genome sequences. With this model, progressively more complex annotations can be composed from other annotations, and the provenance of compositional annotations can be represented at the annotation level or at the level of individual elements of the RDF triples composing the annotations. This in turn allows for progressively richer annotations to be constructed from previous annotation efforts, the precise provenance recording of which facilitates evidence-based inference and error tracking.
    Journal of Biomedical Semantics 11/2013; 4(1):38.

Full-text (5 Sources)

Download
61 Downloads
Available from
Jun 2, 2014