Article

Allergic contact dermatitis.

University of Maryland School of Medicine, Baltimore, MD 21030, USA.
Current directions in autoimmunity 02/2008; 10:1-26. DOI: 10.1159/000131410
Source: PubMed

ABSTRACT Allergic contact dermatitis is a classic example of a cell mediated hypersensitivity reaction in the skin. This occurs as a result of xenobiotic chemicals penetrating into the skin, chemically reacting with self proteins, eventually resulting in a hapten-specific immune response. It is precisely because of this localized immune response that allergic signs and symptoms occur (redness, edema, warmth and pruritus). It has been known for years that conventional T-cells (CD4+ or CD8+ T-cells that express a T-cell receptor alpha/Beta) are critical effectors for this reaction. There is emerging evidence that innate immune lymphocytes such as invariant Natural killer T-cells and even Natural killer cells may play important role. Other T-cell types such as Tregulatory cells and the IL-10 secreting Tregulatory cells type I are likely to be important in the control (resolution) of allergic contact dermatitis. Other cell types that may contribute include B-cells and hapten-specific IgM. Additionally, epidermal Langerhans cells have been ascribed an indispensable role as an antigen presenting cell to educate T-cells of the skin immune system. Studies of mice that lack this cell type suggest that Langerhans cells may be dispensible, and may even play a regulatory role in allergic contact dermatitis. The identity of the antigen presenting cells that complement Langerhans cells has yet to be identified. Lastly, Keratinocytes play a role in all phases of allergic contact dermatitis, from the early initiation phase with the elaboration of inflammatory cytokines, that plays a role in Langerhans cell migration, and T-cell trafficking, through the height of the inflammatory phase with direct interactions with epidermotrophic T-cells, through the resolution phase of allergic contact dermatitis with the production of anti-inflammatory cytokines and tolerogenic antigen presentation to effector T-cells. As the understanding of allergic contact dermatitis continues to improve, this will provide novel therapeutic targets for immune modulating therapy.

0 Followers
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The emerging field of vascular composite allotransplantation (VCA) has become a clinical reality. Building upon cutting edge understandings of transplant surgery and immunology, complex grafts such as hands and faces can now be transplanted with success. Many of the challenges that have historically been limiting factors in transplantation, such as rejection and the morbidity of immunosuppression, remain challenges in VCA. Because of the accessibility of most VCA grafts, and the highly immunogenic nature of the skin in particular, VCA has become the focal point for cross-disciplinary approaches to developing novel approaches for some of the most challenging immunological problems in transplantation, particularly the early diagnoses and assessment of rejection. This paper provides a historically oriented introduction to the field of organ transplantation and the evolution of VCA.
    Clinical and Developmental Immunology 02/2013; 2013:402980. DOI:10.1155/2013/402980 · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the anti-allergy activities of persimmon leaf extract (PLE) on a phthalic anhydride (PA)-induced allergic mouse model. A human leukemic mast cell line (HMC-1) was used to examine the inhibitory activity of PLE on the histamine release by human leukemic mast cells. PLE inhibited histamine release from HMC-1 cells in response to cross-linkage of high-affinity IgE receptor-α (FcεRIα). Additionally, a PA-induced allergic mouse model was used to investigate the effects of PLE in vivo. Mice were orally administrated with or without PLE of single dose (250 mg/kg/day) for 31 days. Oral intake of PLE significantly inhibited passive cutaneous reactions. Oral administration of PLE to PA-induced allergic mice also led to a striking suppression of the development of contact dermatitis, ear swelling and lymph node weight. In addition, PA-specific IL-4 production of draining lymph node cells was markedly diminished by PLE oral administration, but not IFN-γ. Furthermore, PLE treatment suppressed PA-induced thymus and activation-regulated chemokine (CCL17) and cutaneous T cell-attracting chemokine (CCL27) expressions in ear tissues. Based on these results, we suggest that PLE may have therapeutic potential as an effective material for management of irritant contact dermatitis or related inflammatory diseases.
    03/2012; 17(1):14-21. DOI:10.3746/pnf.2012.17.1.014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Assessment of allergenic potential of chemicals is performed using animal models, such as the murine local lymph node assay, which does not distinguish between respiratory and contact allergens. Progress in understanding the mechanisms of skin sensitization, provides us with the opportunity to develop in vitro tests as an alternative to in vivo sensitization testing. The aim of the present study was to evaluate the possibility to use intracellular interleukin-18 (IL-18) production to assess in vitro the contact sensitization potential of low molecular weight chemicals. The human keratinocyte cell line NCTC2455 was used. Cells were exposed to contact allergens (cinnamaldehyde, dinitrochlorobenzene, glyoxal, isoeugenol, p-phenylediamine, resorcinol, tetramethylthiuram disulfide, 2-mercaptobenzothiazole, 4-nitrobenzylbromide), to proaptens (cinnamyl alcohol, eugenol), to respiratory allergens (diphenylmethane diisocyanate, trimellitic anhydride, ammonium hexachloroplatinate) and to irritants (sodium lauryl sulphate, salicylic acid, phenol). Cell associated IL-18 were evaluated 24 later. At not cytotoxic concentrations (cell viability higher of 75%, as assessed by MTT reduction assay), all contact sensitizers, including proaptens, induced a dose-related increase in IL-18, whereas both irritants and respiratory failed. Similar results were also obtained using primary human keratinocytes. Results were reproducible, and the method could be transferred to another laboratory, suggesting the potential use of the test in immunotoxicity testing strategies. Overall, results obtained indicated that cell-associated IL-18 may provide an in vitro tool for identification and discrimination of contact versus respiratory allergens and/or irritants.
    Toxicology in Vitro 05/2009; 23(5):789-96. DOI:10.1016/j.tiv.2009.04.005 · 3.21 Impact Factor