Article

Hepatic erythropoietin gene regulation by GATA-4.

Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 02/2004; 279(4):2955-61. DOI: 10.1074/jbc.M310404200
Source: PubMed

ABSTRACT Erythropoietin production switches from fetal liver to adult kidney during development. GATA transcription factors 2 and 3 could be involved in modulating this switch, because they were shown to negatively regulate erythropoietin gene transcription through a promoter proximal GATA site. Herein, we analyzed the role of several GATA factors in the regulation of the erythropoietin gene in human liver and in hepatoma cells. Although GATA-3 expression in hepatocytes increases during human development, erythropoietin mRNA accumulation is unaltered in mutant mice lacking GATA-3. We found that GATA-2, -3, -4, and -6 are all expressed in human hepatocytes and that GATA-4 exhibits the most prominent Epo promoter binding activity in vitro and in vivo. Inhibition of GATA-4 expression by RNA interference leads to a dramatic reduction in Epo gene transcription in Hep3B cells. Moreover, GATA-4 expression is high and limited to hepatocytes in the fetal liver, whereas GATA-4 expression in the adult liver is low and restricted to epithelial cells surrounding the biliary ducts. Thus, GATA-4 is critical for transcription of the Epo gene in hepatocytes and may contribute to the switch in the site of Epo gene expression from the fetal liver to the adult kidney.

0 Bookmarks
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GATA transcription factors and their Friend of Gata (FOG) cofactors control the development of diverse tissues. GATA4 and GATA6 are essential for the expansion of the embryonic liver bud, but their expression patterns and functions in the adult liver are unclear. We characterized the expression of GATA and FOG factors in whole mouse liver and purified hepatocytes. GATA4, GATA6, and FOG1 are the most prominently expressed family members in whole liver and hepatocytes. GATA4 chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) identified 4409 occupied sites, associated with genes enriched in ontologies related to liver function, including lipid and glucose metabolism. However, hepatocyte-specific excision of Gata4 had little impact on gross liver architecture and function, even under conditions of regenerative stress, and, despite the large number of GATA4 occupied genes, resulted in relatively few changes in gene expression. To address possible redundancy between GATA4 and GATA6, both factors were conditionally excised. Surprisingly, combined Gata4,6 loss did not exacerbate the phenotype resulting from Gata4 loss alone. This points to the presence of an unusually robust transcriptional network in adult hepatocytes that ensures the maintenance of liver function.
    PLoS ONE 01/2013; 8(12):e83723. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Erythropoietin (EPO) regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR), suggest the potential for EPO response in metabolism and disease.
    International Journal of Molecular Sciences 01/2014; 15(6):10296-10333. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepcidin is an antimicrobial peptide hormone that plays a central role in the metabolism of iron and its expression in the liver can be induced through two major pathways: the inflammatory pathway, mainly via IL-6; and the iron-sensing pathway, mediated by BMP-6. GATA-proteins are group of evolutionary conserved transcriptional regulators that bind to the consensus motif-WGATAR-in the promoter region. In hepatoma cells, GATA-proteins 4 and 6 in conjunction with the co-factor friend of GATA (FOG) were shown to modulate the transcription of HAMP. However, it is unclear as to which of the GATA-proteins drive the expression of HAMP in vivo. In this study, using in vitro and in vivo approaches, we investigated the relevance of GATA and FOG proteins in the expression of hepcidin following treatment with IL-6 and BMP-6. We found that treatment of Huh7 cells with either IL-6 or BMP-6 increased the HAMP promoter activity. The HAMP promoter activity following treatment with IL-6 or BMP-6 was further increased by co-transfection of the promoter with GATA proteins 4 and 6. However, co-transfection of the HAMP promoter with FOG proteins 1 or 2 repressed the promoter response to treatments with either IL-6 or BMP-6. The effects of both GATA and FOG proteins on the promoter activity in response to IL-6 or BMP-6 treatment were abrogated by mutation of the GATA response element-TTATCT-in the HAMP promoter region -103/-98. In vivo, treatment of mice with lipopolysaccharide led to a transient increase of Gata-6 expression in the liver that was positively correlated with the expression of hepcidin. Our results indicate that during inflammation GATA-6 is up-regulated in concert with hepcidin while GATA-4 and FOG (1 and 2) are repressed.
    Biology of Metals 11/2013; · 3.17 Impact Factor