Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression

Viral Biochemistry Section, Laboratory of Molecular Microbiology, National Institutes of Allergy Diseases, Bethesda, MD 20892, USA.
Virology (Impact Factor: 3.28). 03/2004; 319(2):163-75. DOI: 10.1016/j.virol.2003.11.021
Source: PubMed

ABSTRACT Two HIV-1 accessory proteins, Vpu and Vif, are notoriously difficult to express autonomously in the absence of the viral Tat and Rev proteins. We examined whether the codon bias observed in the vpu and vif genes relative to highly expressed human genes contributes to the Rev dependence and low expression level outside the context of the viral genome. The entire vpu gene as well as the 5' half of the vif gene were codon optimized and the resulting open reading frames (ORFs) (vphu and hvif, respectively) were cloned in autonomous expression vectors under the transcriptional control of the CMV promoter. Codon optimization efficiently removed the expression block observed in the native genes and allowed high levels of Rev- and Tat-independent expression of Vpu and Vif. Most of the higher protein levels detected are accounted for by enhanced steady-state levels of the mRNA encoding the optimized species. Nuclear run-on experiments show for the first time that codon optimization has no effect on the rate of transcriptional initiation or elongation of the vphu mRNA. Instead, optimization of the vpu gene was found to stabilize the vphu mRNA in the nucleus and enhance its export to the cytoplasm. This was achieved by allowing the optimized mRNA to use a new CRM I-independent nuclear export pathway. This work provides a better understanding of the molecular mechanisms underlying the process of codon optimization and introduces novel tools to study the biological functions of the Vpu and Vif proteins independently of other viral proteins.


Available from: Stephan Bour, Jun 16, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1 Vif regulates viral infectivity by inhibiting the encapsidation of APOBEC3G (APO3G) through proteasomal degradation of the protein. Here we compared various Vif proteins for their ability to induce APO3G degradation and rescue viral infectivity. We found that Vif expressed from proviral vectors caused relatively inefficient degradation of APO3G in HeLa cells yet was very effective in inhibiting APO3G's antiviral activity. On the other hand, Vif expressed autonomously from a codon-optimized vector caused very efficient APO3G degradation and also effectively inhibited APO3G's antiviral effects. In contrast, a Vif chimera containing an N-terminal fluorescent tag efficiently induced APO3G degradation but was unable to restore viral infectivity. The lack of a direct correlation between APO3G degradation and rescue of viral infectivity suggests that these two properties of Vif are functionally separable. Our data imply that intracellular degradation of APO3G may not be the sole activity of Vif required for the production of infectious virions from APO3G-expressing cells.
    Virology 01/2008; 369(2):329-39. DOI:10.1016/j.virol.2007.08.005 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The viral infectivity factor gene (vif) of HIV-1 increases the infectivity of viral particles by inactivation of cellular anti-viral factors, and supports productive viral replication in primary human CD4 T cells and in certain non-permissive T cell lines. Here, we demonstrate that Vif also contributes to the arrest of HIV-1 infected cells in the G(2) phase of the cell cycle. Viruses deleted in Vif or Vpr induce less cell cycle arrest than wild-type virus, while cells infected with HIV-1 deleted in both Vif and Vpr have a cell cycle profile equivalent to that of uninfected cells. Furthermore, expression of Vif alone induces accumulation of cells in the G(2) phase of the cell cycle. These data demonstrate a novel role for Vif in cell cycle regulation and suggest that Vif and Vpr independently drive G(2) arrest in HIV-1 infected cells. Our results may have implications for the actions and interactions of key HIV-1 accessory proteins in AIDS pathogenesis.
    Virology 04/2007; 359(2):243-52. DOI:10.1016/j.virol.2006.09.026 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that Rev-dependent expression of HIV-1 Gag from CMV immediate early promoter critically depends on the AU-rich codon bias of the gag gene. Here, we demonstrate that adaptation of the green fluorescent protein (GFP) reporter gene to HIV codon bias is sufficient to turn this hivGFP RNA into a quasi-lentiviral message following the rules of late lentiviral gene expression. Accordingly, GFP expression was significantly decreased in transfected cells strictly correlating with reduced RNA levels. In the presence of the HIV 5' major splice donor, the hivGFP RNAs were stabilized in the nucleus and efficiently exported to the cytoplasm following fusion of the 3' Rev-responsive element (RRE) and coexpression of HIV-1 Rev. This Rev-dependent translocation was specifically inhibited by leptomycin B suggesting export via the CRM1-dependent pathway used by late lentiviral transcripts. In conclusion, this quasi-lentiviral reporter system may provide a new platform for developing sensitive Rev screening assays.
    Virology 10/2006; 352(2):295-305. DOI:10.1016/j.virol.2006.05.001 · 3.28 Impact Factor