Antigen load and viral sequence diversification determine the functional profile of HIV-1-specific CD8+ T cells.

Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America.
PLoS Medicine (Impact Factor: 14). 05/2008; 5(5):e100. DOI: 10.1371/journal.pmed.0050100
Source: PubMed

ABSTRACT Virus-specific CD8(+) T lymphocytes play a key role in the initial reduction of peak viremia during acute viral infections, but display signs of increasing dysfunction and exhaustion under conditions of chronic antigen persistence. It has been suggested that virus-specific CD8(+) T cells with a "polyfunctional" profile, defined by the capacity to secrete multiple cytokines or chemokines, are most competent in controlling viral replication in chronic HIV-1 infection. We used HIV-1 infection as a model of chronic persistent viral infection to investigate the process of exhaustion and dysfunction of virus-specific CD8(+) T cell responses on the single-epitope level over time, starting in primary HIV-1 infection.
We longitudinally analyzed the polyfunctional epitope-specific CD8(+) T cell responses of 18 patients during primary HIV-1 infection before and after therapy initiation or sequence variation in the targeted epitope. Epitope-specific CD8(+) T cells responded with multiple effector functions to antigenic stimulation during primary HIV-1 infection, but lost their polyfunctional capacity in response to antigen and up-regulated programmed death 1 (PD-1) expression with persistent viremic infection. This exhausted phenotype significantly decreased upon removal of stimulation by antigen, either in response to antiretroviral therapy or by reduction of epitope-specific antigen load in the presence of ongoing viral replication, as a consequence of in vivo selection of cytotoxic T lymphocyte escape mutations in the respective epitopes. Monofunctionality increased in CD8(+) T cell responses directed against conserved epitopes from 49% (95% confidence interval 27%-72%) to 76% (56%-95%) (standard deviation [SD] of the effect size 0.71), while monofunctionality remained stable or slightly decreased for responses directed against escaped epitopes from 61% (47%-75%) to 56% (42%-70%) (SD of the effect size 0.18) (p < 0.05).
These data suggest that persistence of antigen can be the cause, rather than the consequence, of the functional impairment of virus-specific T cell responses observed during chronic HIV-1 infection, and underscore the importance of evaluating autologous viral sequences in studies aimed at investigating the relationship between virus-specific immunity and associated pathogenesis.

Download full-text


Available from: Chanson J Brumme, Jul 01, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although robust and highly effective anti-viral T cells contribute to the clearance of many acute infections, viral persistence is associated with the development of functionally inferior, exhausted, T cell responses. Exhaustion develops in a step-wise and progressive manner, ranges in severity, and can culminate in the deletion of the anti-viral T cells. This disarming of the response is consequential as it compromises viral control and potentially serves to dampen immune-mediated damage. Exhausted T cells are unable to elaborate typical anti-viral effector functions. They are characterized by the sustained upregulation of inhibitory receptors and display a gene expression profile that distinguishes them from prototypic effector and memory T cell populations. In this review we discuss the properties of exhausted T cells; the virological and immunological conditions that favor their development; the cellular and molecular signals that sustain the exhausted state; and strategies for preventing and reversing exhaustion to favor viral control. Copyright © 2014 Elsevier Inc. All rights reserved.
    Virology 01/2015; 361. DOI:10.1016/j.virol.2014.12.033 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pharmacological reactivation of human immunodeficiency virus (HIV) expression from latent proviruses coupled with fully suppressive antiretroviral therapy (ART) has been suggested as a strategy to eradicate HIV infection. In order for this strategy to be effective, latently infected cells must be killed either by the cytopathic effect of reactivated HIV gene expression, or by HIV-specific cytotoxic T lymphocyte (CTL). However, a review of current data reveals little evidence that CTL retain an antiviral effector capacity in patients on fully suppressive ART, implying that the HIV-specific CTL present in these patients will not be able to eliminate HIV-infected CD4 T cells effectively. If this is due to functional impairment or a quantitative deficit of HIV-specific CTL during ART, then therapeutic vaccination may improve the prospects for eradicating latent reservoirs. However, data from the macaque simian immunodeficiency virus (SIV) model indicate that , SIV-specific CTL are only effective during the early stages of the viral replication cycle, and this constitutes an alternative explanation why HIV-specific CTL do not appear to have an impact on HIV reservoirs during ART. In that case, immunotoxins that target HIV-expressing cells may be a more promising approach for HIV eradication.
    Frontiers in Immunology 03/2013; 4:52. DOI:10.3389/fimmu.2013.00052
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DC) are potent antigen presenting cells which initiate and coordinate the immune response making them central targets of and attractive candidates for manipulation in chronic lentiviral infections. Emerging evidence suggests that DC immune function is disrupted during both acute and chronic infection with human immunodeficiency virus (HIV), simian immunodeficiency virus (SIV), and feline immunodeficiency virus (FIV). Despite some early promising data, the use of DC for lentiviral immunotherapy has not fulfilled its expected potential and has been complicated by the large number of variables involved in DC harvesting, purifying, and antigen loading. Pre-clinical studies aimed at identifying successful strategies for DC augmentation of current HIV treatment protocols are needed. Over the past two decades, the FIV model for HIV infection has increased the understanding of retroviral pathogenesis, and studies have begun using the FIV model to study DC dysfunction and DC-mediated immunotherapy. Careful consideration of the many variables involved in DC function and therapy should help develop protocols to explore the potential of DC vaccine-based therapies for lentiviral infection.
    Veterinary Immunology and Immunopathology 10/2009; 134(1-2):75-81. DOI:10.1016/j.vetimm.2009.10.012 · 1.75 Impact Factor