Article

Short-term effects of coenzyme Q(10) in progressive supranuclear palsy: A randomized, placebo-controlled trial

Department of Neurology, Philipps University, Marburg, Germany.
Movement Disorders (Impact Factor: 5.63). 05/2008; 23(7):942-9. DOI: 10.1002/mds.22023
Source: PubMed

ABSTRACT Mitochondrial complex I appears to be dysfunctional in progressive supranuclear palsy (PSP). Coenzyme Q(10) (CoQ(10)) is a physiological cofactor of complex I. Therefore, we evaluated the short-term effects of CoQ(10) in PSP. We performed a double-blind, randomized, placebo-controlled, phase II trial, including 21 clinically probable PSP patients (stage < or = III) to receive a liquid nanodispersion of CoQ(10) (5 mg/kg/day) or matching placebo. Over a 6-week period, we determined the change in CoQ(10) serum concentration, cerebral energy metabolites (by (31)P- and (1)H-magnetic resonance spectroscopy), motor and neuropsychological dysfunction (PSP rating scale, UPDRS III, Hoehn and Yahr stage, Frontal Assessment Battery, Mini Mental Status Examination, Montgomery Asberg Depression Scale). CoQ(10) was safe and well tolerated. In patients receiving CoQ(10) compared to placebo, the concentration of low-energy phosphates (adenosine-diphosphate, unphosphorylated creatine) decreased. Consequently, the ratio of high-energy phosphates to low-energy phosphates (adenosine-triphosphate to adenosine-diphosphate, phospho-creatine to unphosphorylated creatine) increased. These changes were significant in the occipital lobe and showed a consistent trend in the basal ganglia. Clinically, the PSP rating scale and the Frontal Assessment Battery improved slightly, but significantly, upon CoQ(10) treatment compared to placebo. Since CoQ(10) appears to improve cerebral energy metabolism in PSP, long-term treatment might have a disease-modifying, neuroprotective effect.

2 Followers
 · 
215 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibromyalgia (FM) is a chronic pain syndrome with unknown etiology. Recent studies have shown evidence demonstrating that mitochondrial dysfunction and oxidative stress may have a role in the pathophysiology of FM. Coenzyme Q10 (CoQ10) is an essential electron carrier in the mitochondrial respiratory chain and a strong antioxidant. Low CoQ10 levels have been detected in patients with FM, and a significant decrease of clinical symptoms has been reported after oral CoQ10 supplementation. In this report, we show the effect of CoQ10 treatment on clinical symptoms, blood mononuclear cells, and mitochondrial and oxidative stress markers from a woman with FM. After CoQ10 treatment, the patient reported a significant improvement of clinical symptoms. At the cellular level, CoQ10 treatment restored mitochondrial dysfunction and the mtDNA copy number, decreased oxidative stress, and increased mitochondrial biogenesis. Our results suggest that CoQ10 could be an alternative therapeutic approach for FM.
    Nutrition 08/2012; 28(11-12):1200-3. DOI:10.1016/j.nut.2012.03.018 · 3.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although mitochondrial disease research in general is robust, adequate treatment of these life-threatening conditions has lagged, partly because of a persistence of clinical anecdotes as substitutes for scientifically and ethically rigorous clinical trials. Here I summarize the key lessons learned from some of the "first generation" of randomized controlled trials for genetic mitochondrial diseases and suggest how future trials may benefit from both past experience and exciting new resources available for patient-oriented research and training in this field.
    Mitochondrion 05/2011; 11(5):679-85. DOI:10.1016/j.mito.2011.05.002 · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fundamental role of coenzyme Q(10) (CoQ(10)) in mitochondrial bioenergetics and its well-acknowledged antioxidant properties constitute the basis for its clinical applications, although some of its effects may be related to a gene induction mechanism. Cardiovascular disease is still the main field of study and the latest findings confirm a role of CoQ(10) in improving endothelial function. The possible relation between CoQ(10) deficiency and statin side effects is highly debated, particularly the key issue of whether CoQ(10) supplementation counteracts statin myalgias. Furthermore, in cardiac patients, plasma CoQ(10) was found to be an independent predictor of mortality. Studies on CoQ(10) and physical exercise have confirmed its effect in improving subjective fatigue sensation and physical performance and in opposing exercise-related damage. In the field of mitochondrial myopathies, primary CoQ(10) deficiencies have been identified, involving different genes of the CoQ(10) biosynthetic pathway; some of these conditions were found to be highly responsive to CoQ(10) administration. The initial observations of CoQ(10) effects in Parkinson's and Huntington's diseases have been extended to Friedreich's ataxia, where CoQ(10) and other quinones have been tested. CoQ(10) is presently being used in a large phase III trial in Parkinson's disease. CoQ(10) has been found to improve sperm count and motility on asthenozoospermia. Moreover, for the first time CoQ(10) was found to decrease the incidence of preeclampsia in pregnancy. The ability of CoQ(10) to mitigate headache symptoms in adults was also verified in pediatric and adolescent populations.
    Nutrition 11/2009; 26(3):250-4. DOI:10.1016/j.nut.2009.08.008 · 3.05 Impact Factor