Conformational properties of the aggregation precursor state of HypF-N

Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy.
Journal of Molecular Biology (Impact Factor: 3.96). 07/2008; 379(3):554-67. DOI: 10.1016/j.jmb.2008.04.002
Source: PubMed

ABSTRACT The conversion of specific proteins or protein fragments into insoluble, ordered fibrillar aggregates is a fundamental process in protein chemistry, biology, medicine and biotechnology. As this structural conversion seems to be a property shared by many proteins, understanding the mechanism of this process will be of extreme importance. Here we present a structural characterisation of a conformational state populated at low pH by the N-terminal domain of Escherichia coli HypF. Combining different biophysical and biochemical techniques, including near- and far-UV circular dichroism, intrinsic and 8-anilinonaphthalene-1-sulfonate-derived fluorescence, dynamic light scattering and limited proteolysis, we will show that this state is largely unfolded but contains significant secondary structure and hydrophobic clusters. It also appears to be more compact than a random coil-like state but less organised than a molten globule state. Increase of the total ionic strength of the solution induces aggregation of such a pre-molten globule state into amyloid-like protofibrils, as revealed by thioflavin T fluorescence and atomic force microscopy. These results show that a pre-molten globule state can be, among other possible conformational states, one of the precursor states of amyloid formation. In addition, the possibility of triggering aggregation by modulating the ionic strength of the solution provides one a unique opportunity to study both the initial precursor state and the aggregation process.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The biological control of insect pests is based on the use of natural enemies. However, the growing information on the molecular mechanisms underpinning the interactions between insects and their natural antagonists can be exploited to develop "bio-inspired" pest control strategies, mimicking suppression mechanisms shaped by long co-evolutionary processes. Here we focus on a virulence factor encoded by the polydnavirus associated with the braconid wasp Toxoneuron nigriceps (TnBV), an endophagous parasitoid of noctuid moth larvae. This virulence factor (TnBVANK1) is a member of the viral ankyrin (ANK) protein family, and appears to be involved both in immunosuppression and endocrine alterations of the host. Transgenic tobacco plants expressing TnBVANK1 showed insecticide activity and caused developmental delay in Spodoptera littoralis larvae feeding on them. This effect was more evident in a transgenic line showing a higher number of transcripts of the viral gene. However, this effect was not associated with evidence of translocation into the haemocoel of the entire protein, where the receptors of TnBVANK1 are putatively located. Indeed, immunolocalization experiments evidenced the accumulation of this viral protein in the midgut, where it formed a thick layer coating the brush border of epithelial cells. In vitro transport experiments demonstrated that the presence of recombinant TnBVANK1 exerted a dose-dependent negative impact on amino acid transport. These results open new perspectives for insect control and stimulate additional research efforts to pursue the development of novel bioinsecticides, encoded by parasitoid-derived genes. However, future work will have to carefully evaluate any effect that these molecules may have on beneficial insects and on non-target organisms.
    PLoS ONE 12/2014; 9(12):e113988. DOI:10.1371/journal.pone.0113988 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we discuss amyloidogenic proteins, their misfolding, resulting structures, and interactions with membranes, which lead to membrane damage and subsequent cell death. Many of these proteins are implicated in serious illnesses such as Alzheimer's disease and Parkinson's disease. Misfolding of amyloidogenic proteins leads to the formation of polymorphic oligomers and fibrils. Oligomeric aggregates are widely thought to be the toxic species, however, fibrils also play a role in membrane damage. We focus on the structure of these aggregates and their interactions with model membranes. Study of interactions of amlyoidogenic proteins with model and natural membranes has shown the importance of the lipid bilayer in protein misfolding and aggregation and has led to the development of several models for membrane permeabilization by the resulting amyloid aggregates. We discuss several of these models: formation of structured pores by misfolded amyloidogenic proteins, extraction of lipids, interactions with receptors in biological membranes, and membrane destabilization by amyloid aggregates perhaps analogous to that caused by antimicrobial peptides.
    03/2013; 4(1):20-55. DOI:10.3390/biom4010020
  • [Show abstract] [Hide abstract]
    ABSTRACT: The misfolding and aberrant assembly of peptides and proteins into fibrillar aggregates is the hallmark of many pathologies. Fibril formation is accompanied by oligomeric species thought to be the primary pathogenic agents in many of these diseases. With the aim of identifying the structural determinants responsible for the toxicity of misfolded oligomers, we created twelve oligomeric variants from the N-terminal domain of the E. coli HypF protein (HypF-N) by replacing one or more charged amino acid residues with neutral apolar residues, and allowing the mutated proteins to aggregate under two sets of conditions. The resulting oligomeric species have different degrees of cytotoxicity when added to the extracellular medium of the cells, as assessed by the extent of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra¬zolium bromide (MTT) reduction, apoptosis and influx of Ca2+ into the cells. The structural properties of the oligomeric variants were characterized by evaluating their surface hydrophobicity with 8-anilinonaphthalene-1-sulphonate (ANS) binding and by measuring their size by means of turbidimetry as well as light scattering. We find that increases in the surface hydrophobicity of the oligomers following mutation can promote the formation of larger assemblies and that the overall toxicity correlates with a combination of both surface hydrophobicity and size, with the most toxic oligomers having high hydrophobicity and small size. These results have allowed the relationships between these three parameters to be studied simultaneously and quantitatively, and have enabled the generation of an equation that is able to rationalize and even predict toxicity of the oligomers resulting from their surface hydrophobicity and size.
    ACS Chemical Biology 07/2014; 9(10). DOI:10.1021/cb500505m · 5.36 Impact Factor


Available from
Jun 10, 2014