Article

Identifying Cognitive Mechanisms Targeted for Treatment Development in Schizophrenia: An Overview of the First Meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia Initiative

Department of Psychiatry, University of California, Davis, CA 95817, USA.
Biological psychiatry (Impact Factor: 9.47). 08/2008; 64(1):4-10. DOI: 10.1016/j.biopsych.2008.03.020
Source: PubMed

ABSTRACT This overview describes the generation and development of the ideas that led to the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative. It also describes the organization, process, and products of the first meeting. The CNTRICS initiative involves a series of three conferences that will systematically address barriers to translating paradigms developed in the basic animal and human cognitive neuroscience fields for use in translational research aimed at developing novel treatments for cognitive impairments in schizophrenia. The articles in this special section report on the results of the first conference, which used a criterion-based consensus-building process to develop a set of cognitive constructs to be targeted for translation efforts.

0 Followers
 · 
188 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia patients exhibit impairments in auditory-based social cognition, indicated by deficits in detection of prosody, such as affective prosody and basic pitch perception. However, little is known about the psychometric properties of behavioral tests used to assess these functions. The goal of this paper is to characterize the properties of prosody and pitch perception tasks and to investigate whether they can be shortened. The pitch perception test evaluated is a tone-matching task developed by Javitt and colleagues (J-TMT). The prosody test evaluated is the auditory emotion recognition task developed by Juslin and Laukka (JL-AER). The sample includes 124 schizophrenia patients (SZ) and 131 healthy controls (HC). Properties, including facility and discrimination, of each item were assessed. Effects of item characteristics (e.g., emotion) were also evaluated. Shortened versions of the tests are proposed based on facility, discrimination, and/or ability of item characteristics to discriminate between patients and controls. Test-retest reliability is high for patients and controls for both the original and short forms of the J-TMT and JL-AER. Thus, the original as well as short forms of the J-TMT and JL-AER are suggested for inclusion in clinical trials of social cognitive and perceptual treatments. The development of short forms further increases the utility of these auditory tasks in clinical trials and clinical practice. The large SZ vs. HC differences reported here also highlight the profound nature of auditory deficits and a need for remediation.
    Comprehensive Psychiatry 08/2014; 55(8). DOI:10.1016/j.comppsych.2014.08.046 · 2.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations.
    Frontiers in Synaptic Neuroscience 11/2014; 6:28. DOI:10.3389/fnsyn.2014.00028
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The levels of kynurenic acid (KYNA), an endogenous negative modulator of alpha7 nicotinic acetylcholine receptors (α7nAChRs), are elevated in the brains of patients with schizophrenia (SZ). We reported that increases of brain KYNA in rats, through dietary exposure to its precursor kynurenine from embryonic day (ED)15 to postnatal day (PD) 21, result in neurochemical and cognitive deficits in adulthood. The present experiments focused on the effects of prenatal exposure to elevated kynurenine on measures of prefrontal excitability known to be impaired in SZ. Pregnant dams were fed a mash containing kynurenine (100 mg/day; progeny = EKYNs) from ED15 until ED22. Controls were fed an unadulterated mash (progeny = ECONs). The dietary loading procedure elevated maternal and fetal plasma kynurenine (2223% and 693% above controls, respectively) and increased fetal KYNA (forebrain; 500% above controls) on ED21. Elevations in forebrain KYNA disappeared after termination of the loading (PD2), but KYNA levels in the prefrontal cortex (PFC) were unexpectedly increased again when measured in adults (PD56-80; 75% above controls). We also observed changes in several markers of prefrontal excitability, including expression of the α7nAChR (22% and 17% reductions at PD2 and PD56-80), expression of mGluR2 (31% and 24% reductions at ED21 and PD56-80), dendritic spine density (11-14% decrease at PD56-80), subsensitive mesolimbic stimulation of glutamate release in PFC, and reversal/extra-dimensional shift deficits in the prefrontally-mediated set-shifting task. These results highlight the deleterious impact of elevated KYNA levels during sensitive periods of early development, which model the pathophysiological and cognitive deficits seen in SZ. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Neuropharmacology 11/2014; 90C:33-41. DOI:10.1016/j.neuropharm.2014.10.017 · 4.82 Impact Factor

Full-text (2 Sources)

Download
39 Downloads
Available from
Jun 3, 2014