Article

The primary open-angle glaucoma gene WDR36 functions in ribosomal RNA processing and interacts with the p53 stress-response pathway.

Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
Human Molecular Genetics (Impact Factor: 6.68). 06/2008; 17(16):2474-85. DOI: 10.1093/hmg/ddn147
Source: PubMed

ABSTRACT Primary open-angle glaucoma (POAG) is a genetically complex neuropathy that affects retinal ganglion cells and is a leading cause of blindness worldwide. WDR36, a gene of unknown function, was recently identified as causative for POAG at locus GLC1G. Subsequent studies found disease-associated variants in control populations, leaving the role of WDR36 in this disease unclear. To address this issue, we determined the function of WDR36. We studied Wdr36 in zebrafish and found it is the functional homolog of yeast Utp21. Utp21 is cell essential and functions in the nucleolar processing of 18S rRNA, which is required for ribosome biogenesis. Evidence for functional homology comes from sequence alignment, ubiquitous expression, sub-cellular localization to the nucleolus and loss-of-function phenotypes that include defects in 18S rRNA processing and abnormal nucleolar morphology. Additionally, we show that loss of Wdr36 function leads to an activation of the p53 stress-response pathway, suggesting that co-inheritance of defects in p53 pathway genes may influence the impact of WDR36 variants on POAG. Although these results overall do not provide evidence for or against a role of WDR36 in POAG, they do provide important baseline information for future studies.

1 Follower
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glaucoma is a heterogeneous group of disorders that progressively lead to blindness due to loss of retinal ganglion cells and damage to the optic nerve. It is a leading cause of blindness and visual impairment worldwide. Although research in the field of glaucoma is substantial, the pathophysiologic mechanisms causing the disease are not completely understood. A wide variety of animal models have been used to study glaucoma. These include monkeys, dogs, cats, rodents, and several other species. Although these models have provided valuable information about the disease, there is still no ideal model for studying glaucoma due to its complexity. In this paper we present a summary of most of the animal models that have been developed and used for the study of the different types of glaucoma, the strengths and limitations associated with each species use, and some potential criteria to develop a suitable model.
    BioMed Research International 05/2012; 2012:692609. DOI:10.1155/2012/692609 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence, there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually driven behaviors in the newly hatched larvae.The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases.Here, we review the anatomy, physiology, and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases.
    Developmental Neurobiology 03/2012; 72(3):302-27. DOI:10.1002/dneu.20919 · 4.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We identified the WD-repeat-containing protein, WDR36, as an interacting partner of the β isoform of thromboxane A(2) receptor (TPβ) by yeast two-hybrid screening. We demonstrated that WDR36 directly interacts with the C-terminus and the first intracellular loop of TPβ by in vitro GST-pulldown assays. The interaction in a cellular context was observed by co-immunoprecipitation, which was positively affected by TPβ stimulation. TPβ-WDR36 colocalization was detected by confocal microscopy at the plasma membrane in non-stimulated HEK293 cells but the complex translocated to intracellular vesicles following receptor stimulation. Coexpression of WDR36 and its siRNA-mediated knockdown, respectively, increased and inhibited TPβ-induced Gαq signalling. Interestingly, WDR36 co-immunoprecipitated with Gαq, and promoted TPβ-Gαq interaction. WDR36 also associated with phospholipase Cβ (PLCβ) and increased the interaction between Gαq and PLCβ, but prevented sequestration of activated Gαq by GRK2. In addition, the presence of TPβ in PLCβ immunoprecipitates was augmented by expression of WDR36. Finally, disease-associated variants of WDR36 affected its ability to modulate Gαq-mediated signalling by TPβ. We report that WDR36 acts as a new scaffold protein tethering a G-protein-coupled receptor, Gαq and PLCβ in a signalling complex.
    Journal of Cell Science 10/2011; 124(Pt 19):3292-304. DOI:10.1242/jcs.085795 · 5.33 Impact Factor

Preview

Download
0 Downloads
Available from