Coactivator function of RIP140 for NFkappaB/RelA-dependent cytokine gene expression.

Emmy Noether and Marie Curie Research Group Molecular Metabolic Control, German Cancer Research Center Heidelberg, Heidelberg, Germany.
Blood (Impact Factor: 10.43). 08/2008; 112(2):264-76. DOI: 10.1182/blood-2007-11-121699
Source: PubMed

ABSTRACT Inflammatory responses represent a hallmark of numerous pathologies including sepsis, bacterial infection, insulin resistance, and malign obesity. Here we describe an unexpected coactivator function for the nuclear receptor interacting protein 140 (RIP140) for nuclear factor kappaB (NFkappaB), a master transcriptional regulator of inflammation in multiple tissues. Previous work has shown that RIP140 suppresses the expression of metabolic gene networks, but we have found that genetic as well as acute deficiency of RIP140 leads to the inhibition of the proinflammatory program in macrophages. The ability of RIP140 to function as a coactivator for cytokine gene promoter activity relies on direct protein-protein interactions with the NFkappaB subunit RelA and histone acetylase cAMP-responsive element binding protein (CREB)-binding protein (CBP). RIP140-dependent control of proinflammatory gene expression via RelA/CBP may, therefore, represent a molecular rational for the cellular integration of metabolic and inflammatory pathways.

Download full-text


Available from: Thomas G Hofmann, Aug 16, 2015
  • Source
    • "Thus miR-21 may inhibit the actions of PDCD4 on NF-κB activity and promote the production of anti-inflammatory cytokines. Likewise, receptorinteracting protein 140 (RIP140) is a nuclear protein believed to associate with NF-κB to aid in the transcription of pro-inflammatory cytokines in macrophages [61]. Using an acute septic mouse model, Ho et al. [62] identified that miR-33 targeted the 3′ UTR of RIP140 mRNA. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sepsis is the major cause of death in the intensive care unit (ICU). Numerous biomarkers have been studied to identify the cause and severity of sepsis but these factors cannot differentiate between infectious and non-infectious inflammatory response. MicroRNAs (miRNAs) are non-coding RNA transcripts that regulate the expression of genes by repressing translation or degrading mRNA. Importantly, miRNAs can be released outside cells and easily detectable in bodily fluids such as blood, sweat, urine and breast milk. Numerous studies have explored the idea of utilizing extracellular miRNAs as biomarkers for sepsis by profiling the dysregulation of miRNAs in blood samples of sepsis patients. So far, miR-223, miR-146a and miR-150 have been identified to have promising prognostic and diagnostic value to sepsis. In addition, various intracellular miRNAs have been implicated to play critical roles in regulating the TLR-NF-κB pathway, which is a well-known inflammatory signaling pathway involved in the process of sepsis. Here, we summarize the recent progress on the role of extracellular and intracellular miRNAs in sepsis. Specifically, we discuss the possible role of circulating miRNA biomarkers for the diagnosis of sepsis and how intracellular miRNAs regulate the inflammatory responses in sepsis.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 07/2014; 1842(11). DOI:10.1016/j.bbadis.2014.07.021 · 5.09 Impact Factor
  • Source
    • "RIP140 is a pleiotropic co-factor that regulates energy homeostasis (Leonardsson et al., 2004; Herzog et al., 2007; Seth et al., 2007) and plays an essential role in ovulation (White et al., 2000; Tullet et al., 2005). Its function seems to vary according to its physiological role, serving as a co-repressor of catabolic gene expression (Christian et al., 2005; Seth et al., 2007) but as a co-activator of inflammatory gene expression (Zschiedrich et al., 2008; Nautiyal et al., 2010). In the ovary, RIP140 is required for the expression of the epidermal growth factor (EGF)-like family of growth factors, "
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear receptor interacting protein (Nrip1), also known as RIP140, is a co-regulator for nuclear receptors that plays an essential role in ovulation by regulating the expression of the epidermal growth factor-like family of growth factors. Although several studies indicate a role for RIP140 in breast cancer, its role in the development of the mammary gland is unclear. By using RIP140-null and RIP140 transgenic mice, we demonstrate that RIP140 is an essential factor for normal mammary gland development and that it functions by mediating oestrogen signalling. RIP140-null mice exhibit minimal ductal elongation with no side-branching, whereas RIP140-overexpressing mice show increased cell proliferation and ductal branching with age. Tissue recombination experiments demonstrate that RIP140 expression is required in both the mammary epithelial and stromal compartments for ductal elongation during puberty and that loss of RIP140 leads to a catastrophic loss of the mammary epithelium, whereas RIP140 overexpression augments the mammary basal cell population and shifts the progenitor/differentiated cell balance within the luminal cell compartment towards the progenitors. For the first time, we present a genome-wide global view of oestrogen receptor-α (ERα) binding events in the developing mammary gland, which unravels 881 ERα binding sites. Unbiased evaluation of several ERα binding sites for RIP140 co-occupancy reveals selectivity and demonstrates that RIP140 acts as a co-regulator with ERα to regulate directly the expression of amphiregulin (Areg), the progesterone receptor (Pgr) and signal transducer and activator of transcription 5a (Stat5a), factors that influence key mitogenic pathways that regulate normal mammary gland development.
    Development 03/2013; 140(5):1079-89. DOI:10.1242/dev.085720 · 6.27 Impact Factor
  • Source
    • "In nonruminant immune cells, NRIP1 interacts with the NF κ B subunit RelA and the transcriptional co-activator CREBBP via the NH 2 -terminal domain of NRIP1 (Fritah et al., 2010). Immune cells devoid of NRIP1 had markedly lower expression of IL6, IL1B, TNF, and IFNB1 (fibroblast isoform) even when challenged with LPS (Zschiedrich et al., 2008). Whether NRIP1 has similar functions in bovine adipose during the peripartal period will have to be determined in future studies. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives were to determine adipose tissue mRNA expression of peroxisome proliferator-activated receptor (PPAR)γ co-regulators, target enzymes and transcription regulators, inflammation-related genes, and adipokines in response to dietary long-chain fatty acids (LCFA). From -21 through 10 d relative to parturition cows were fed no supplemental LCFA (control), saturated LCFA (SFAT; mainly 16:0 and 18:0), or fish oil (FO). Lipid was fed at 250 g/d prepartum or approximately 1.5 to 1.9% of the previous day's dry matter intake postpartum. Transcript profiling of 35 genes via quantitative PCR was conducted on biopsies (n=5 cows/diet) collected at -14 and 11 d from parturition. Despite lower dry matter intake with FO, pre- and postpartal blood nonesterified fatty acids, β-hydroxybutyrate, and liver triacylglycerol were unaffected by treatment but increased after calving regardless of diet. Prepartal expression of adipogenic/lipogenic transcription regulators [CEBPA, CEBPB, RXRA, KLF5, and MLXIPL (formerly ChREBP)] and co-regulators (CARM1, EP300, NCOA1, MED1, NCOR2, and NRIP1) was upregulated by FO and SFAT versus control, whereas most enzymes involved in lipogenesis/triacylglycerol synthesis (FASN, SCD, DGAT2, and LPIN1) had greater expression only with FO. Expression of most adipogenic/lipogenic genes decreased after parturition, but feeding SFAT led to sustained upregulation of CEBPA, CEBPB, RXRA, several PPAR-co-activators, and DGAT2 and SCD, suggesting maintenance of a pro-adipogenic/pro-lipogenic state with SFAT. The co-activator CREBBP was greater in cows fed lipid and did not decrease after parturition, suggesting ligand activation of PPARγ. The greater peripartal expression of NFKB1 and TBK1 due to dietary lipid was suggestive of a local inflammatory response. At amounts fed prepartum, both FO and SFAT were effective in upregulating the adipose tissue PPARγ-gene network. In contrast, only SFAT led to sustaining that response. Overall, the observed expression patterns are suggestive of an adipogenic regulatory mechanism particularly responsive to SFAT.
    Journal of Dairy Science 12/2011; 94(12):5913-25. DOI:10.3168/jds.2011-4230 · 2.55 Impact Factor
Show more