Comprehensive screening for antigens overexpressed on carcinomas via isolation of human mAbs that may be therapeutic

Division of Antibody Project, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 06/2008; 105(20):7287-92. DOI: 10.1073/pnas.0712202105
Source: PubMed

ABSTRACT Although several murine mAbs that have been humanized became useful therapeutic agents against a few malignancies, therapeutic Abs are not yet available for the majority of the human cancers because of our lack of knowledge of which antigens (Ags) can become useful targets. In the present study we established a procedure for comprehensive identification of such Ags through the extensive isolation of human mAbs that may become therapeutic. Using the phage-display Ab library we isolated a large number of human mAbs that bind to the surface of tumor cells. They were individually screened by immunostaining, and clones that preferentially and strongly stained the malignant cells were chosen. The Ags recognized by those clones were isolated by immunoprecipitation and identified by MS. We isolated 2,114 mAbs with unique sequences and identified 21 distinct Ags highly expressed on several carcinomas. Of those 2,114 mAbs 356 bound specifically to one of the 21 Ags. After preparing complete IgG(1) Abs the in vitro assay for Ab-dependent cell-mediated cytotoxicity (ADCC) and the in vivo assay in cancer-bearing athymic mice were performed to examine antitumor activity. The mAbs converted to IgG(1) revealed effective ADCC as well as antitumor activity in vivo. Because half of the 21 Ags showed distinct tumor-specific expression pattern and the mAbs isolated showed various characteristics with strong affinity to the Ag, it is likely that some of the Ags detected will become useful targets for the corresponding carcinoma therapy and that several mAbs will become therapeutic agents.

Download full-text


Available from: Nobuhiro Hayashi, Sep 28, 2015
24 Reads
  • Source
    • "To overcome the limitations of the pure antigen availability, we used phage display and a cell-based antibody selection (CBAS) approach for generation of fully human antibodies against CCR4. The cell-based panning strategies have been successfully used previously for generating antibodies against bulky membrane antigens, such as EGFR, HER2, ALCAM, EpCAM [51] or c-Met [52]. In general, cell-based screening is often challenging due to the much greater antigen complexity, lower antigen concentration and antigen accessibility. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background CC chemokine receptor 4 (CCR4) represents a potentially important target for cancer immunotherapy due to its expression on tumor infiltrating immune cells including regulatory T cells (Tregs) and on tumor cells in several cancer types and its role in metastasis. Methodology Using phage display, human antibody library, affinity maturation and a cell-based antibody selection strategy, the antibody variants against human CCR4 were generated. These antibodies effectively competed with ligand binding, were able to block ligand-induced signaling and cell migration, and demonstrated efficient killing of CCR4-positive tumor cells via ADCC and phagocytosis. In a mouse model of human T-cell lymphoma, significant survival benefit was demonstrated for animals treated with the newly selected anti-CCR4 antibodies. Significance For the first time, successful generation of anti- G-protein coupled chemokine receptor (GPCR) antibodies using human non-immune library and phage display on GPCR-expressing cells was demonstrated. The generated anti-CCR4 antibodies possess a dual mode of action (inhibition of ligand-induced signaling and antibody-directed tumor cell killing). The data demonstrate that the anti-tumor activity in vivo is mediated, at least in part, through Fc-receptor dependent effector mechanisms, such as ADCC and phagocytosis. Anti-CC chemokine receptor 4 antibodies inhibiting receptor signaling have potential as immunomodulatory antibodies for cancer.
    PLoS ONE 07/2014; 9(7):e103776. DOI:10.1371/journal.pone.0103776 · 3.23 Impact Factor
  • Source
    • "Recently, we isolated a novel fully human monoclonal IgG1 antibody designated as 059-053 against CD147 from a large-scale human antibody library constructed using a phage-display system that incorporated a highly efficient screening method termed isolation of antigen–antibody complexes through organic solvent, with living pancreatic cancer cells [8]. This antibody induces antibody-dependent cell-mediated cytotoxicity (ADCC) and inhibits cell proliferation of pancreatic cancer cells [8], [9]. In the present study, we radiolabeled 059-053, and evaluated the in vitro and in vivo properties as a new positron emission tomography (PET) probe for imaging CD147-expressing tumors in a pancreatic cancer model. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer is an aggressive cancer and its prognosis remains poor. Therefore, additional effective therapy is required to augment and/or complement current therapy. CD147, high expression in pancreatic cancer, is involved in the metastatic process and is considered a good candidate for targeted therapy. CD147-specfic imaging could be useful for selection of appropriate patients. Therefore, we evaluated the potential of a fully human anti-CD147 monoclonal antibody 059-053 as a new positron emission tomography (PET) probe for pancreatic cancer. CD147 expression was evaluated in four pancreatic cancer cell lines (MIA Paca-2, PANC-1, BxPC-3, and AsPC-1) and a mouse cell line A4 as a negative control. Cell binding, competitive inhibition and internalization assays were conducted with (125)I-, (67)Ga-, or (89)Zr-labeled 059-053. In vivo biodistribution of (125)I- or (89)Zr-labeled 059-053 was conducted in mice bearing MIA Paca-2 and A4 tumors. PET imaging with [(89)Zr]059-053 was conducted in subcutaneous and orthotopic tumor mouse models. Among four pancreatic cancer cell lines, MIA Paca-2 cells showed the highest expression of CD147, while A4 cells had no expression. Immunohistochemical staining showed that MIA Paca-2 xenografts also highly expressed CD147 in vivo. Radiolabeled 059-053 specifically bound to MIA Paca-2 cells with high affinity, but not to A4. [(89)Zr]059-053 uptake in MIA Paca-2 tumors increased with time from 11.0±1.3% injected dose per gram (ID/g) at day 1 to 16.9±3.2% ID/g at day 6, while [(125)I]059-053 uptake was relatively low and decreased with time, suggesting that 059-053 was internalized into tumor cells in vivo and (125)I was released from the cells. PET with [(89)Zr]059-053 clearly visualized subcutaneous and orthotopic tumors. [(89)Zr]059-053 is a promising PET probe for imaging CD147 expression in pancreatic cancer and has the potential to select appropriate patients with CD147-expressing tumors who could gain benefit from anti-CD147 therapy.
    PLoS ONE 04/2013; 8(4):e61230. DOI:10.1371/journal.pone.0061230 · 3.23 Impact Factor
  • Source
    • "The use of antibody technology for phenotypic target discovery has been dominated by the use of hybridoma-based techniques. However, improved antibody isolation and target identification techniques combined with the incorporation of high-throughput functional screens have led to increased success using phage display-derived antibodies [7]. The phenotypic antibody screening approach for target discovery has the advantage that the isolated antibodies can also be used for validation activities and in some instances can even be pursued as therapeutic candidates. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The continued discovery of therapeutic antibodies, which address unmet medical needs, requires the continued discovery of tractable antibody targets. Multiple protein-level target discovery approaches are available and these can be used in combination to extensively survey relevant cell membranomes. In this study, the MDA-MB-231 cell line was selected for membranome survey as it is a 'triple negative' breast cancer cell line, which represents a cancer subtype that is aggressive and has few treatment options. The MDA-MB-231 breast carcinoma cell line was used to explore three membranome target discovery approaches, which were used in parallel to cross-validate the significance of identified antigens. A proteomic approach, which used membrane protein enrichment followed by protein identification by mass spectrometry, was used alongside two phenotypic antibody screening approaches. The first phenotypic screening approach was based on hybridoma technology and the second was based on phage display technology. Antibodies isolated by the phenotypic approaches were tested for cell specificity as well as internalisation and the targets identified were compared to each other as well as those identified by the proteomic approach. An anti-CD73 antibody derived from the phage display-based phenotypic approach was tested for binding to other 'triple negative' breast cancer cell lines and tested for tumour growth inhibitory activity in a MDA-MB-231 xenograft model. All of the approaches identified multiple cell surface markers, including integrins, CD44, EGFR, CD71, galectin-3, CD73 and BCAM, some of which had been previously confirmed as being tractable to antibody therapy. In total, 40 cell surface markers were identified for further study. In addition to cell surface marker identification, the phenotypic antibody screening approaches provided reagent antibodies for target validation studies. This is illustrated using the anti-CD73 antibody, which bound other 'triple negative' breast cancer cell lines and produced significant tumour growth inhibitory activity in a MDA-MB-231 xenograft model. This study has demonstrated that multiple methods are required to successfully analyse the membranome of a desired cell type. It has also successfully demonstrated that phenotypic antibody screening provides a mechanism for rapidly discovering and evaluating antibody tractable targets, which can significantly accelerate the therapeutic discovery process.
    Molecular Cancer 02/2013; 12(1):11. DOI:10.1186/1476-4598-12-11 · 4.26 Impact Factor
Show more