Construction and Evaluation of a Clostridium thermocellum ATCC 27405 Whole-Genome Oligonucleotide Microarray

Department of Biology, Xavier University, Cincinnati, Ohio, United States
Applied biochemistry and biotechnology (Impact Factor: 1.74). 05/2007; 137-140(1-12):663-74. DOI: 10.1007/s12010-007-9087-6
Source: PubMed

ABSTRACT Clostridium thermocellum is an anaerobic, thermophilic bacterium that can directly convert cellulosic substrates into ethanol. Microarray technology is a powerful tool to gain insights into cellular processes by examining gene expression under various physiological states. Oligonucleotide microarray probes were designed for 96.7% of the 3163 C. thermocellum ATCC 27405 candidate protein-encoding genes and then a partial-genome microarray containing 70 C. thermocellum specific probes was constructed and evaluated. We detected a signal-to-noise ratio of three with as little as 1.0 ng of genomic DNA and only low signals from negative control probes (nonclostridial DNA), indicating the probes were sensitive and specific. In order to further test the specificity of the array we amplified and hybridized 10 C. thermocellum polymerase chain reaction products that represented different genes and found gene specific hybridization in each case. We also constructed a whole-genome microarray and prepared total cellular RNA from the same point in early-logarithmic growth phase from two technical replicates during cellobiose fermentation. The reliability of the microarray data was assessed by cohybridization of labeled complementary DNA from the cellobiose fermentation samples and the pattern of hybridization revealed a linear correlation. These results taken together suggest that our oligonucleotide probe set can be used for sensitive and specific C. thermocellum transcriptomic studies in the future.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The BioEnergy Science Center, a nationally and internationally peer-reviewed center of leading scientific institutions and scientists, is organized and in operation as a U.S. Department of Energy Bioenergy Research Center. This Oak Ridge National Laboratory-led Center has members from top-tier universities, leading national labs, and private companies organized as a single project team, with each member chosen for its significant contributions in the Center’s research focus areas. The recalcitrance of cellulosic biomass is viewed as (1) the most significant obstacle to the establishment of a cellulosic biofuels industry, (2) essential to producing cost-competitive fuels, and (3) widely applicable, since nearly all biofuels and biofeedstocks would benefit from such advances. The mission of the BioEnergy Science Center is to make revolutionary advances in understanding and overcoming the recalcitrance of biomass to conversion into sugars, making it feasible to displace petroleum with ethanol and other fuels.
    In Vitro Cellular & Developmental Biology - Plant 06/2009; 45(3):193-198. DOI:10.1007/s11627-009-9213-y · 1.16 Impact Factor
  • Source
    Biofuels from Agricultural Wastes and Byproducts, 07/2010: pages 67 - 96; , ISBN: 9780813822716
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A microarray study of chemostat growth on insoluble cellulose or soluble cellobiose has provided substantial new information on Clostridium thermocellum gene expression. This is the first comprehensive examination of gene expression in C. thermocellum under defined growth conditions. Expression was detected from 2,846 of 3,189 genes, and regression analysis revealed 348 genes whose changes in expression patterns were growth rate and/or substrate dependent. Successfully modeled genes included those for scaffoldin and cellulosomal enzymes, intracellular metabolic enzymes, transcriptional regulators, sigma factors, signal transducers, transporters, and hypothetical proteins. Unique genes encoding glycolytic pathway and ethanol fermentation enzymes expressed at high levels simultaneously with previously established maximal ethanol production were also identified. Ranking of normalized expression intensities revealed significant changes in transcriptional levels of these genes. The pattern of expression of transcriptional regulators, sigma factors, and signal transducers indicates that response to growth rate is the dominant global mechanism used for control of gene expression in C. thermocellum.
    Applied and Environmental Microbiology 02/2011; 77(4):1243-53. DOI:10.1128/AEM.02008-10 · 3.95 Impact Factor
Show more