Article

A novel mutation in IRF6 resulting in VWS-PPS spectrum disorder with renal aplasia

Department of Plastic and Reconstructive Surgery and Burns Unit, University Hospital of Copenhagen, Rigshospitalet, Denmark.
American Journal of Medical Genetics Part A (Impact Factor: 2.05). 06/2008; 146A(12):1605-8. DOI: 10.1002/ajmg.a.32257
Source: PubMed

ABSTRACT Popliteal pterygium syndrome (PPS) and Van der Woude syndrome (VWS) are caused by mutations in the gene interferon regulatory factor 6 (IRF6). Skeletal, genital malformations and involvement of the skin occur in PPS and orofacial clefting and lip pits occur in both. We report on a patient with unilateral cleft lip and palate, ankyloblepharon, paramedian lip pits, unilateral renal aplasia, and a coronal hypospadias. By sequencing IRF6, we detected a novel missense mutation (Arg339Ile). The other family members were unaffected and had no IRF6 mutations, including the patient's brother who was also born with hypospadias. The patient and his brother were both conceived by in vitro fertilization (IVF). It is discussed whether the renal malformation in the patient is related to the IVF procedure or to the IRF6 mutation.

0 Followers
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asbestos-related lung cancer accounts for 4-12% of all lung cancers worldwide. Since putative mechanisms of carcinogenesis differ between asbestos and tobacco induced lung cancers, tumors induced by the two agents may be genetically distinct. To identify gene expression biomarkers associated with asbestos-related lung tumorigenicity we performed gene expression array analysis on tumors of 36 patients with primary lung adenocarcinoma, comparing 12 patients with lung asbestos body counts above levels associated with urban dwelling (ARLC-AC: asbestos-related lung cancer-adenocarcinoma) with 24 patients with no asbestos bodies (NARLC-AC: non-asbestos related lung cancer-adenocarcinoma). Genes differentially expressed between ARLC-AC and NARLC-AC were identified on fold change and P value, and then prioritized using gene ontology. Candidates included ZNRF3, ADAM28, PPP1CA, IRF6, RAB3D, and PRDX1. Expression of these six genes was technically and biologically replicated by qRT-PCR in the training set and biologically validated in three independent test sets. ADAM28, encoding a disintegrin and metalloproteinase domain protein that interacts with integrins, was consistently upregulated in ARLC across all four datasets. Further studies are being designed to investigate the possible role of this gene in asbestos lung tumorigenicity, its potential utility as a marker of asbestos related lung cancer for purposes of causal attribution, and its potential as a treatment target for lung cancers arising in asbestos exposed persons.
    Genes Chromosomes and Cancer 08/2010; 49(8):688-98. DOI:10.1002/gcc.20779 · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evaluation of the IRF6 gene in Van der Woude syndrome cases from an Indian population. Nine affected and four unaffected individuals from seven families with Van der Woude syndrome as well as five normal controls (with no history of Van der Woude or any other congenital malformation and belonging to the same geographical area as the families with Van der Woude syndrome). Direct sequencing of all coding regions and exon-intron boundaries of the IRF6 gene. Five novel variants: IVS1+3900 A>G, 191 T>C, IVS4+775 C>T, IVS8+218 C>T, 1511 T>A (Ser 416 Arg) and two known variants: IVS6+27 C>G, 1083 G>A (V274I) were detected. Except for one, all were in noncoding regions either in 3'UTR or in introns. There was only one mutation in the coding region, detected in a normal control. The present report indicates that point mutations in the coding region of the IRF6 gene may not be a major cause of Van der Woude syndrome in Indian populations.
    The Cleft Palate-Craniofacial Journal 09/2009; 46(5):541-4. DOI:10.1597/08-202.1 · 1.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interferon regulatory factor 6 encodes a member of the IRF family of transcription factors. Mutations in interferon regulatory factor 6 cause Van der Woude and popliteal pterygium syndrome, two related orofacial clefting disorders. Here, we compared and contrasted the frequency and distribution of exonic mutations in interferon regulatory factor 6 between two large geographically distinct collections of families with Van der Woude and between one collection of families with popliteal pterygium syndrome. We performed direct sequence analysis of interferon regulatory factor 6 exons on samples from three collections, two with Van der Woude and one with popliteal pterygium syndrome. We identified mutations in interferon regulatory factor 6 exons in 68% of families in both Van der Woude collections and in 97% of families with popliteal pterygium syndrome. In sum, 106 novel disease-causing variants were found. The distribution of mutations in the interferon regulatory factor 6 exons in each collection was not random; exons 3, 4, 7, and 9 accounted for 80%. In the Van der Woude collections, the mutations were evenly divided between protein truncation and missense, whereas most mutations identified in the popliteal pterygium syndrome collection were missense. Further, the missense mutations associated with popliteal pterygium syndrome were localized significantly to exon 4, at residues that are predicted to bind directly to DNA. The nonrandom distribution of mutations in the interferon regulatory factor 6 exons suggests a two-tier approach for efficient mutation screens for interferon regulatory factor 6. The type and distribution of mutations are consistent with the hypothesis that Van der Woude is caused by haploinsufficiency of interferon regulatory factor 6. On the other hand, the distribution of popliteal pterygium syndrome-associated mutations suggests a different, though not mutually exclusive, effect on interferon regulatory factor 6 function.
    Genetics in medicine: official journal of the American College of Medical Genetics 04/2009; 11(4):241-7. DOI:10.1097/GIM.0b013e318197a49a · 6.44 Impact Factor