Article

Branched oligosaccharide structures on HBV prevent interaction with both DC-SIGN and L-SIGN.

Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands.
Journal of Viral Hepatitis (Impact Factor: 3.08). 06/2008; 15(9):675-83. DOI: 10.1111/j.1365-2893.2008.00993.x
Source: PubMed

ABSTRACT Hepatitis B virus (HBV) is a DNA virus that infects the liver as primary target. Currently, a high affinity receptor for HBV is still unknown. The dendritic cell specific C-type lectin DC-SIGN is involved in pathogen recognition through mannose and fucose containing carbohydrates leading to the induction of an anti-viral immune response. Many glycosylated viruses subvert this immune surveillance function and exploit DC-SIGN as a port of entry and for trans-infection of target cells. The glycosylation pattern on HBV surface antigens (HBsAg) together with the tissue distribution of HBV would allow interaction between HBV and DC-SIGN and its liver-expressed homologue L-SIGN. Therefore, a detailed study to investigate the binding of HBV to DC-SIGN and L-SIGN was performed. For HCV, both DC-SIGN and L-SIGN are known to bind envelope glycoproteins E1 and E2. Soluble DC-SIGN and L-SIGN specifically bound HCV virus-like particles, but no interaction with either HBsAg or HepG2.2.15-derived HBV was detected. Also, neither DC-SIGN nor L-SIGN transfected Raji cells bound HBsAg. In contrast, highly mannosylated HBV, obtained by treating HBV producing HepG2.2.15 cells with the alpha-mannosidase I inhibitor kifunensine, is recognized by DC-SIGN. The alpha-mannosidase I trimming of N-linked oligosaccharide structures thus prevents recognition by DC-SIGN. On the basis of these findings, it is tempting to speculate that HBV exploits mannose trimming as a way to escape recognition by DC-SIGN and thereby subvert a possible immune activation response.

0 Bookmarks
 · 
87 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver/lymph node-specific intercellular adhesion molecule-3-grabbing integrin (L-SIGN) facilitates hepatitis C virus (HCV) infection through interaction with HCV envelope protein E2. Signaling events triggered by the E2 via L-SIGN are poorly understood. Here, kinase cascades of Raf-MEK-ERK pathway were defined upon the E2 treatment in NIH3T3 cells with stable expression of L-SIGN. The E2 bound to the cells through interaction with L-SIGN and such binding subsequently resulted in phosphorylation and activation of Raf, MEK, and ERK. Blockage of L-SIGN with antibody against L-SIGN reduced the E2-induced phosphorylation of Raf, MEK, and ERK. In the cells infected with cell culture-derived HCV, phosphorylation of these kinases was enhanced by the E2. Up-regulation of Raf-MEK-ERK pathway by HCV E2 via L-SIGN provides new insights into signaling cascade of L-SIGN, and might be a potential target for control and prevention of HCV infection.
    Cell biochemistry and biophysics 01/2013; · 3.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells play an important role in the immune response to viruses. As the hepatitis B virus (HBV) replicates in hepatocytes, examination of the liver of chronic hepatitis B (CHB) patients is crucial to better understand the role of NK cells in HBV. HBeAg-negative CHB differs in many aspects from HBeAg-positive CHB, and until now little is known about the intrahepatic NK cell response in HBeAg-negative patients. Intrahepatic immune control might be different in HBeAg-negative as compared with HBeAg-positive patients. Liver NK cells were investigated in 21 HBeAg-positive and 35 HBeAg-negative CHB patients. Biopsy specimens were processed for routine histopathology and staging according to Ishak scores. Intrahepatic and blood NK cell frequencies, activation status and function of NK cells were analysed by flow cytometry. In HBeAg-negative CHB patients, compared to blood, liver NK cells displayed a more activated phenotype and stimulation further increased the activation status, but production of IFN-γ was markedly less. There was no difference with HBeAg-positive CHB. Only in HBeAg-negative CHB, but not in HBeAg-positive CHB, NK cell activation was inversely correlated with HBsAg levels. The present study indicates that liver NK cells of CHB have a higher activation status compared to blood. However, they are not capable to increase cytokine production above levels reached by activated blood NK cells. In HBeAg-negative CHB, the levels of HBsAg may contribute to the incapacity of activated liver NK cells to increase cytokine production.
    Liver international: official journal of the International Association for the Study of the Liver 07/2013; · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin-related protein (DC-SIGNR), a type II integral membrane protein and a member of the C-type lectins, has been reported to bind various strains of HIV-1, HIV-2, and simian immunodeficiency virus. Serum DC-SIGNR is not currently available for the detection of non-Hodgkin lymphoma (NHL). Using an enzyme-linked immunosorbent assay (ELISA), we assessed the serum levels of DC-SIGNR in 70 cancer patients and 100 healthy controls. Additionally, using immunohistochemistry, we determined the expression of DC-SIGNR in the lymph nodes. Using the ELISA, low serum levels of DC-SIGNR were detected in the patients (median, 4.513 ng·L(-1); range, 1.066-9.232 ng·L(-1); p = 0.0003). Serum concentrations of DC-SIGNR correlated significantly with age (p = 0.0077) and lactic acid dehydrogenase (p = 0.0046) and β2-microglobulin (p = 0.0491) levels. However, we found no statistically significant correlation between serum DC-SIGNR levels and clinical data such as sex, Ann Arbor stage, B symptoms, and histologic subtypes. Moreover, NHL patients with a lower level of serum DC-SIGNR expression in lymphatic endothelial cells also showed negative immunostaining levels. These results suggest that DC-SIGNR is a biological molecule that may be potentially useful in NHL clinical settings.
    Biochemistry and Cell Biology 08/2013; 91(4):214-20. · 2.92 Impact Factor

Full-text (2 Sources)

Download
11 Downloads
Available from
Sep 3, 2014