Article

Comparison of activated caspase detection methods in the gentamicin-treated chick cochlea

Laboratory for Cellular and Molecular Hearing Research, Department of Otolaryngology, Evans 637, Boston University Medical Center, 715 Albany Street, Boston, MA 02118, USA. <>
Hearing Research (Impact Factor: 2.85). 07/2008; 240(1-2):1-11. DOI: 10.1016/j.heares.2008.03.003
Source: PubMed

ABSTRACT Aminoglycoside antibiotics induce caspase-dependent apoptotic death in cochlear hair cells. Apoptosis, a regulated form of cell death, can be induced by many stressors, which activate signaling pathways that result in the controlled dismantling of the affected cell. The caspase family of proteases is activated in the apoptotic signaling pathway and is responsible for cellular destruction. The initiator caspase-9 and the effector caspase-3 are both activated in chick cochlear hair cells following aminoglycoside exposure. We have analyzed caspase activation in the avian cochlea during gentamicin-induced hair cell death to compare two different methods of caspase detection: caspase antibodies and CaspaTag kits. Caspase antibodies bind to the cleaved activated form of caspase-9 or caspase-3 in specific locations in fixed tissue. CaspaTag is a fluorescent inhibitor that binds to a reactive cysteine residue on the large subunit of the caspase heterodimer in unfixed tissue. To induce cochlear hair cell loss, 1-2 week-old chickens received a single injection of gentamicin (300 mg/kg). Chicks were sacrificed 24, 30, 42, 48, 72, or 96 h after injection. Cochleae were dissected and labeled for activated caspase-9 or caspase-3 using either caspase-directed antibodies or CaspaTag kits. Ears were co-labeled with either phalloidin or myosin VI to visualize hair cells and to determine the progression of cochlear damage. The timing of caspase activation was similar for both assays; however, caspase-9 and caspase-3 antibodies labeled only those cells currently undergoing apoptotic cell death. Conversely, CaspaTag-labeled all the cells that have undergone apoptotic cell death and ejection from the sensory epithelium, in addition to those that are currently in the cell death process. This makes CaspaTag ideal for showing an overall pattern or level of cell death over a period of time, while caspase antibodies provide a snapshot of cell death at a specific time point.

0 Followers
 · 
79 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: Cyclooxygenase-2 (COX-2) is frequently over-expressed in primary breast cancer. In transgenic breast cancer models, over-expression of COX-2 leads to tumour formation while COX-2 inhibition exerts anti-tumour effects in breast cancer cell lines. To further determine the effect of COX-2 inhibition in primary breast cancer, here we aimed at identifying transcriptional changes in breast cancer tissues of patients treated with the selective COX-2 inhibitor celecoxib. METHODS: In a single-centre double-blinded phase II study, thirty-seven breast cancer patients were randomised to receive either pre-operative celecoxib (400 mg) twice daily for two to three weeks (n = 22) or a placebo likewise (n = 15). Gene expression in fresh-frozen pre-surgical biopsies (before treatment) and surgical excision specimens (after treatment) was profiled by using Affymetrix arrays. Differentially expressed genes and altered pathways were bioinformatically identified. Expression of selected genes was validated by quantitative PCR (qPCR). Immunohistochemical protein expression analyses of the proliferation marker Ki-67, the apoptosis marker cleaved caspase-3, and the neo-angiogenesis marker CD34 served to evaluate biological response. RESULTS: We identified 972 and 586 significantly up- and down-regulated genes, respectively, in celecoxib-treated specimens. Significant expression changes in six out of eight genes could be validated by qPCR. Pathway analyses revealed over-representation of deregulated genes in the networks of proliferation, cell cycle, extracellular matrix biology, and inflammatory immune response. The Ki-67 mean change relative to baseline was -29.1% (P = 0.019) and -8.2% (P = 0.384) in the treatment and control arm, respectively. Between treatment groups, the change in Ki-67 was statistically significant (P = 0.029). Cleaved caspase-3 and CD34 expression were not significantly different between the celecoxib-treated and placebo-treated group. CONCLUSIONS: Short-term COX-2 inhibition by celecoxib induces transcriptional programs supporting an anti-tumour activity in primary breast cancer tissue. The impact on proliferation-associated genes is reflected by a reduction of Ki-67 positive cells. Therefore, COX-2 inhibition should be considered as treatment strategy for further clinical testing in primary breast cancer. Trial registration: ClinicalTrials.gov NCT01695226.
    Breast cancer research: BCR 04/2013; 15(2):R29. DOI:10.1186/bcr3409 · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aminoglycoside-induced cochlear ototoxicity causes hair cell (HC) loss and results in hearing impairment in patients. Previous studies have developed the concept of an ototoxicity-sensitive period during which the cochleae of young mice are more vulnerable to auditory trauma than adults. Here, we compared neomycin-induced ototoxicity at the following four developmental ages in mice: postnatal day (P)1-P7, P8-P14, P15-P21, and P60-P66. We found that when neomycin was administered between P8 and P14, the auditory brainstem response threshold increase was significantly higher at low frequencies and HC loss was significantly greater in the apical turn of the cochlea compared to neomycin administration during the other age ranges. Quantitative real-time PCR (qPCR) data revealed that the expression of apoptotic markers, including Casp3 and Casp9, was significantly higher when neomycin was injected from P8 to P14, while the expression of the X-linked inhibitor of apoptosis protein (XIAP) gene was significantly higher when neomycin was injected from P60 to P66. Because XIAP expression was low during the neomycin-sensitive period, we overexpressed XIAP in mice and found that it could protect against neomycin-induced hearing loss at low frequencies and HC loss in the apical turn of the cochlea. Altogether, our findings demonstrate a protective role for XIAP against neomycin-induced hearing loss and HC loss in the apical turn of the cochlea during the ototoxic-sensitive period, and suggest that apoptotic factors mediate the effect of neomycin during the ototoxic-sensitive period.
    Frontiers in Cellular Neuroscience 09/2014; 8:248. DOI:10.3389/fncel.2014.00248 · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sensorineural hearing loss is a normal consequence of aging and results from a variety of extrinsic challenges such as excessive noise exposure and certain therapeutic drugs, including the aminoglycoside antibiotics. The proximal cause of hearing loss is often death of inner ear hair cells. The signaling pathways necessary for hair cell death are not fully understood and may be specific for each type of insult. In the lateral line, the closely related aminoglycoside antibiotics neomycin and gentamicin appear to kill hair cells by activating a partially overlapping suite of cell death pathways. The lateral line is a system of hair cell-containing sense organs found on the head and body of aquatic vertebrates. In the present study, we use a combination of pharmacologic and genetic manipulations to assess the contributions of p53, Bax, and Bcl2 in the death of zebrafish lateral line hair cells. Bax inhibition significantly protects hair cells from neomycin but not from gentamicin toxicity. Conversely, transgenic overexpression of Bcl2 attenuates hair cell death due to gentamicin but not neomycin, suggesting a complex interplay of pro-death and pro-survival proteins in drug-treated hair cells. p53 inhibition protects hair cells from damage due to either aminoglycoside, with more robust protection seen against gentamicin. Further experiments evaluating p53 suggest that inhibition of mitochondrial-specific p53 activity confers significant hair cell protection from either aminoglycoside. These results suggest a role for mitochondrial p53 activity in promoting hair cell death due to aminoglycosides, likely upstream of Bax and Bcl2.
    Journal of the Association for Research in Otolaryngology 07/2013; DOI:10.1007/s10162-013-0404-1 · 2.55 Impact Factor

Full-text (2 Sources)

Download
34 Downloads
Available from
May 30, 2014