Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution

Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK.
Nature (Impact Factor: 42.35). 06/2008; 453(7199):1239-43. DOI: 10.1038/nature07002
Source: PubMed

ABSTRACT Recent data from several organisms indicate that the transcribed portions of genomes are larger and more complex than expected, and that many functional properties of transcripts are based not on coding sequences but on regulatory sequences in untranslated regions or non-coding RNAs. Alternative start and polyadenylation sites and regulation of intron splicing add additional dimensions to the rich transcriptional output. This transcriptional complexity has been sampled mainly using hybridization-based methods under one or few experimental conditions. Here we applied direct high-throughput sequencing of complementary DNAs (RNA-Seq), supplemented with data from high-density tiling arrays, to globally sample transcripts of the fission yeast Schizosaccharomyces pombe, independently from available gene annotations. We interrogated transcriptomes under multiple conditions, including rapid proliferation, meiotic differentiation and environmental stress, as well as in RNA processing mutants to reveal the dynamic plasticity of the transcriptional landscape as a function of environmental, developmental and genetic factors. High-throughput sequencing proved to be a powerful and quantitative method to sample transcriptomes deeply at maximal resolution. In contrast to hybridization, sequencing showed little, if any, background noise and was sensitive enough to detect widespread transcription in >90% of the genome, including traces of RNAs that were not robustly transcribed or rapidly degraded. The combined sequencing and strand-specific array data provide rich condition-specific information on novel, mostly non-coding transcripts, untranslated regions and gene structures, thus improving the existing genome annotation. Sequence reads spanning exon-exon or exon-intron junctions give unique insight into a surprising variability in splicing efficiency across introns, genes and conditions. Splicing efficiency was largely coordinated with transcript levels, and increased transcription led to increased splicing in test genes. Hundreds of introns showed such regulated splicing during cellular proliferation or differentiation.

Download full-text


Available from: Samuel Marguerat, Jul 05, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in model plants, such as Arabidopsis, rice, and maize. However, the presence of lncRNAs and how they function in fleshy fruit ripening are still largely unknown because fleshy fruit ripening is not present in the above model plants. Tomato is the model system for fruit ripening studies due to its dramatic ripening process. To investigate further the role of lncRNAs in fruit ripening, it is necessary and urgent to discover and identify novel lncRNAs and understand the function of lncRNAs in tomato fruit ripening. Here it is reported that 3679 lncRNAs were discovered from wild-type tomato and ripening mutant fruit. The lncRNAs are transcribed from all tomato chromosomes, 85.1% of which came from intergenic regions. Tomato lncRNAs are shorter and have fewer exons than protein-coding genes, a situation reminiscent of lncRNAs from other model plants. It was also observed that 490 lncRNAs were significantly up-regulated in ripening mutant fruits, and 187 lncRNAs were down-regulated, indicating that lncRNAs could be involved in the regulation of fruit ripening. In line with this, silencing of two novel tomato intergenic lncRNAs, lncRNA1459 and lncRNA1840, resulted in an obvious delay of ripening of wild-type fruit. Overall, the results indicated that lncRNAs might be essential regulators of tomato fruit ripening, which sheds new light on the regulation of fruit ripening.
    Journal of Experimental Botany 05/2015; DOI:10.1093/jxb/erv203 · 5.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rice is a model system used for crop genomics studies. The completion of the rice genome draft sequences in 2002 not only accelerated functional genome studies, but also initiated a new era of resequencing rice genomes. Based on the reference genome in rice, next-generation sequencing (NGS) using the high-throughput sequencing system can efficiently accomplish whole genome resequencing of various genetic populations and diverse germplasm resources. Resequencing technology has been effectively utilized in evolutionary analysis, rice genomics and functional genomics studies. This technique is beneficial for both bridging the knowledge gap between genotype and phenotype and facilitating molecular breeding via gene design in rice. Here, we also discuss the limitation, application and future prospects of rice resequencing.
    Rice 07/2014; 7(1):4. DOI:10.1186/s12284-014-0004-7 · 2.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differential growth of the pearl oyster Pinctada fucata still exists in the aquaculture production. There is no systematic study of the entire transcriptome of differential gene expression in P. fucata in the literature. In this study, high-throughput Illumina/HiSeq™ 2000 RNA-Seq was used to examine the differences of gene expression in large (L) and small oysters (S). In total, 74,293 and 76,635 unigenes were generated from L and S oysters, respectively. RT quantitative PCR (qPCR) analysis showed the differential expression pattern of 19 out of 34 selected genes was consistent with the results of RNA-Seq analysis: 14 genes (11 for growth, 1 for reproduction and 2 for shell formation) were expressed more highly in S, 5 genes (1 for growth, 1 for reproduction and 3 for the immune system) were expressed more highly in L; 3 genes associated with the immune system were opposite to it; and no difference was found for the remaining 12 genes. Another 9 shell formation-related genes in L and S were examined by qPCR: 1 gene was expressed more highly in L, 5 genes were expressed more highly in S and no difference was found for the remaining 3 genes. Some genes related to growth and development, shell formation and reproduction were expressed more highly in S compared to L. This phenomenon could be explained by "catch-up growth". The results of this study will help toward a comprehensive understanding of the complexity of differential growth between P. fucata individuals and provide valuable information for future research.
    Gene 01/2014; DOI:10.1016/j.gene.2014.01.031 · 2.08 Impact Factor