Deterioration of atherosclerosis in mice lacking angiotensin II type 1A receptor in bone marrow-derived cells.

Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, Japan.
Laboratory Investigation (Impact Factor: 3.96). 08/2008; 88(7):731-9. DOI: 10.1038/labinvest.2008.42
Source: PubMed

ABSTRACT The renin-angiotensin system (RAS) modulates end-organ damages, resulting in cardiovascular and kidney diseases. Experiments both in vitro and in vivo demonstrate that the angiotensin II (Ang II) type 1 (AT1) receptor pathway also exerts pro-inflammatory and pro-atherogenic effects on bone marrow-derived cells (BMDCs). Here, we investigated how AT1 receptor expression by BMDCs contributes to atherosclerosis and kidney injury in vivo by transplanting BM into RAS-activated transgenic mice. There was no difference in the extent of kidney damage between mice receiving BM transplants from mutant mice lacking the angiotensin II type 1a receptor (AT1a) gene and mice receiving transplants from wild-type (WT) mice. However, mice receiving transplants from AT1a 'knockout' (KO) mice displayed accelerated lethality and atherosclerotic lesions. These results indicated that the effects of AT1a receptor on BMDCs are organ dependent. Microarray expression profiling of macrophages from AT1a-KO mice revealed significant changes in the mRNA levels for a number of genes implicated in atherosclerosis. In accordance with the in vivo atherosclerosis results, AT1a-KO macrophages exhibited greater uptake of modified lipoproteins relative to macrophages from WT mice. We propose that the expression of AT1a receptor by BMDCs limits atherosclerosis in vivo.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole body genetic deletion of AT1a receptors in mice uniformly reduces hypercholesterolemia and angiotensin II-(AngII) induced atherosclerosis and abdominal aortic aneurysms (AAAs). However, the role of AT1a receptor stimulation of principal cell types resident in the arterial wall remains undefined. Therefore, the aim of this study was to determine whether deletion of AT1a receptors in either endothelial cells or smooth muscle cells influences the development of atherosclerosis and AAAs. AT1a receptor floxed mice were developed in an LDL receptor -/- background. To generate endothelial or smooth muscle cell specific deficiency, AT1a receptor floxed mice were bred with mice expressing Cre under the control of either Tie2 or SM22, respectively. Groups of males and females were fed a saturated fat-enriched diet for 3 months to determine effects on atherosclerosis. Deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effect on the size of atherosclerotic lesions. We also determined the effect of cell-specific AT1a receptor deficiency on atherosclerosis and AAAs using male mice fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min). Again, deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effects on either AngII-induced atherosclerotic lesions or AAAs. Although previous studies have demonstrated whole body AT1a receptor deficiency diminishes atherosclerosis and AAAs, depletion of AT1a receptors in either endothelial or smooth muscle cells did not affect either of these vascular pathologies.
    PLoS ONE 12/2012; 7(12):e51483. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The locally active ligand peptides, mediators, receptors and signalling pathways of the haematopoietic BM (bone marrow) autocrine/paracrine RAS (renin-angiotensin system) affect the essential steps of definitive blood cell production. Haematopoiesis, erythropoiesis, myelopoiesis, formation of monocytic and lymphocytic lineages, thrombopoiesis and other stromal cellular elements are regulated by the local BM RAS. The local BM RAS is present and active even in primitive embryonic haematopoiesis. ACE (angiotensin-converting enzyme) is expressed on the surface of the first endothelial and haematopoietic cells, forming the marrow cavity in the embryo. ACE marks early haematopoietic precursor cells and long-term blood-forming CD34+ BM cells. The local autocrine tissue BM RAS may also be active in neoplastic haematopoiesis. Critical RAS mediators such as renin, ACE, AngII (angiotensin II) and angiotensinogen have been identified in leukaemic blast cells. The local tissue RAS influences tumour growth and metastases in an autocrine and paracrine fashion via the modulation of numerous carcinogenic events, such as angiogenesis, apoptosis, cellular proliferation, immune responses, cell signalling and extracellular matrix formation. The aim of the present review is to outline the known functions of the local BM RAS within the context of primitive, definitive and neoplastic haematopoiesis. Targeting the actions of local RAS molecules could represent a valuable therapeutic option for the management of neoplastic disorders.
    Clinical Science 03/2013; 124(5):307-23. · 5.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The renin-angiotensin system plays a critical role in the pathogenesis of several cardiovascular diseases, largely through activation of type I angiotensin (AT(1)) receptors by angiotensin II. Treatment with AT(1) receptor blockers (ARBs) is a proven successful intervention for hypertension and progressive heart and kidney disease. However, the divergent actions of AT(1) receptors on individual cell lineages in hypertension may present novel opportunities to optimize the therapeutic benefits of ARBs. For example, T lymphocytes make important contributions to the induction and progression of various cardiovascular diseases, but new experiments indicate that activation of AT(1) receptors on T cells paradoxically limits inflammation and target organ damage in hypertension. Future studies should illustrate how these discrepant functions of AT(1) receptors in target organs versus mononuclear cells can be exploited for the benefit of patients with recalcitrant hypertension and other cardiovascular diseases.
    Current Hypertension Reports 11/2012; · 3.90 Impact Factor


Available from