VMC++ versus BEAMnrc: a comparison of simulated linear accelerator heads for photon beams.

Division of Medical Radiation Physics, Insel Hospital, University of Berne, Berne 3010, Switzerland.
Medical Physics (Impact Factor: 2.91). 04/2008; 35(4):1521-31. DOI: 10.1118/1.2885372
Source: PubMed

ABSTRACT BEAMnrc, a code for simulating medical linear accelerators based on EGSnrc, has been bench-marked and used extensively in the scientific literature and is therefore often considered to be the gold standard for Monte Carlo simulations for radiotherapy applications. However, its long computation times make it too slow for the clinical routine and often even for research purposes without a large investment in computing resources. VMC++ is a much faster code thanks to the intensive use of variance reduction techniques and a much faster implementation of the condensed history technique for charged particle transport. A research version of this code is also capable of simulating the full head of linear accelerators operated in photon mode (excluding multileaf collimators, hard and dynamic wedges). In this work, a validation of the full head simulation at 6 and 18 MV is performed, simulating with VMC++ and BEAMnrc the addition of one head component at a time and comparing the resulting phase space files. For the comparison, photon and electron fluence, photon energy fluence, mean energy, and photon spectra are considered. The largest absolute differences are found in the energy fluences. For all the simulations of the different head components, a very good agreement (differences in energy fluences between VMC++ and BEAMnrc <1%) is obtained. Only a particular case at 6 MV shows a somewhat larger energy fluence difference of 1.4%. Dosimetrically, these phase space differences imply an agreement between both codes at the <1% level, making VMC++ head module suitable for full head simulations with considerable gain in efficiency and without loss of accuracy.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To present the implementation and validation of a geometrical based variance reduction technique for the calculation of phase space data for proton therapy dose calculation.Methods: The treatment heads at the Francis H Burr Proton Therapy Center were modeled with a new Monte Carlo tool (TOPAS based on Geant4). For variance reduction purposes, two particle-splitting planes were implemented. First, the particles were split upstream of the second scatterer or at the second ionization chamber. Then, particles reaching another plane immediately upstream of the field specific aperture were split again. In each case, particles were split by a factor of 8. At the second ionization chamber and at the latter plane, the cylindrical symmetry of the proton beam was exploited to position the split particles at randomly spaced locations rotated around the beam axis. Phase space data in IAEA format were recorded at the treatment head exit and the computational efficiency was calculated. Depth-dose curves and beam profiles were analyzed. Dose distributions were compared for a voxelized water phantom for different treatment fields for both the reference and optimized simulations. In addition, dose in two patients was simulated with and without particle splitting to compare the efficiency and accuracy of the technique.Results: A normalized computational efficiency gain of a factor of 10-20.3 was reached for phase space calculations for the different treatment head options simulated. Depth-dose curves and beam profiles were in reasonable agreement with the simulation done without splitting: within 1% for depth-dose with an average difference of (0.2 ± 0.4)%, 1 standard deviation, and a 0.3% statistical uncertainty of the simulations in the high dose region; 1.6% for planar fluence with an average difference of (0.4 ± 0.5)% and a statistical uncertainty of 0.3% in the high fluence region. The percentage differences between dose distributions in water for simulations done with and without particle splitting were within the accepted clinical tolerance of 2%, with a 0.4% statistical uncertainty. For the two patient geometries considered, head and prostate, the efficiency gain was 20.9 and 14.7, respectively, with the percentages of voxels with gamma indices lower than unity 98.9% and 99.7%, respectively, using 2% and 2 mm criteria.Conclusions: The authors have implemented an efficient variance reduction technique with significant speed improvements for proton Monte Carlo simulations. The method can be transferred to other codes and other treatment heads.
    Medical Physics 04/2013; 40(4):041718. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this work is to describe and validate a new general research tool that performs Monte Carlo (MC) simulations for volumetric modulated arc therapy (VMAT) and dynamic intensity modulated radiation therapy (DIMRT), simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system. The tool is generalized to handle either entrance or exit detectors and provides the simulated dose for the individual control-points of the time-dependent VMAT and DIMRT deliveries. The MC simulation tool was developed with the EGSnrc radiation transport. For the individual control point simulation, we rotate the patient/phantom volume only (i.e. independent of the gantry and planar detector geometries) using the gantry angle in the treatment planning system (TPS) DICOM RP file such that each control point has its own unique phantom file. After MC simulation, we obtained the total dose to the phantom by summing dose contributions for all control points. Scored dose to the sensitive layer of the planar detector is available for each control point. To validate the tool, three clinical treatment plans were used including VMAT plans for a prostate case and a head-and-neck case, and a DIMRT plan for a head-and-neck case. An electronic portal imaging device operated in 'movie' mode was used with the VMAT plans delivered to cylindrical and anthropomorphic phantoms to validate the code using an exit detector. The DIMRT plan was delivered to a novel transmission detector, to validate the code using an entrance detector. The total MC 3D absolute doses in patient/phantom were compared with the TPS doses, while 2D MC doses were compared with planar detector doses for all individual control points, using the gamma evaluation test with 3%/3 mm criteria. The MC 3D absolute doses demonstrated excellent agreement with the TPS doses for all the tested plans, with about 95% of voxels having γ <1 for the plans. For planar dosimetry image comparisons, we defined an acceptable pass rate of >90% of percentage pixels with γ <1. We found that over 90% of control points in the plans passed this criterion. In general, our results indicate that the simulation tool is suitable for accurately calculating both patient/phantom doses and planar doses for VMAT dose delivery. The tool will be valuable to check performance and advance the development of in vivo planar detectors for use in measurement-based VMAT dose verification. In addition, the tool can be useful as an independent research tool for VMAT commissioning of the TPS and delivery system.
    Physics in Medicine and Biology 05/2013; 58(11):3535-3550. · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For superficial lesions, the electrons may be used for radiation therapy. The high energy photons and electrons are produced by a Linear accelerator (Linac). Many of electron fields need the shielding of normal or critical organs. The electron shields are usually lead slabs with few millimeter thicknesses which should be placed near the skin, less than 1 cm away from skin. In the inspection of patients setting in a clinic by a physicist, it was noted that in some cases the technician places the shields far away from skin in the way that the shadow of the field still matches the shielded area. This is due to a conceptual mistake in which one assumes that electrons travel in a straight line and matching the shadow of lead slab is enough for the shielding. This project is about Monte Carlo simulation of this case and dosimetry in which the excess dose to the tissue under the shield is calculated. In this study, BEAMnrc and DOSXYZnrc are used for simulation of the Linac and the electron shields. The water phantom as well as the Linac head (NEPTON Linac) is simulated in the electron mode. The simulation is performed in three various cases in which the lead shield is placed in distances of 1, 20, 40 cm from the surface of the phantom. In all cases, the edge of the shield is matched with the light field, so the shields get smaller as they move from the surface because of the divergence of the light field. The simulations were done in two energies, 6 and 13 MeV. The experiments also were done with EDR2 film dosimetry and the simulation results were validated using the experimental results. In all cases, the dose under the shield was normalized to the dose in the center. The dose of the normal organ under the shield was 2, 38, 43% with respect to the center for shield distances of 1, 20, 40 cm, respectively. So there is a considerable increasing of the dose due to the distanced shielding. In this work exact amount of the dose from this mistake (distanced shielding) is calculated and simulated.
    Journal of medical signals and sensors. 01/2012; 2(3):144-148.


Available from