Article

The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease.

Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
The Journal of Nutritional Biochemistry (Impact Factor: 4.59). 06/2008; 19(10):643-54. DOI: 10.1016/j.jnutbio.2007.11.010
Source: PubMed

ABSTRACT Vascular diseases such as atherosclerosis, stroke or myocardial infarction are a significant public health problem worldwide. Attempts to prevent vascular diseases often imply modifications and improvement of causative risk factors such as high blood pressure, obesity, an unfavorable profile of blood lipids or insulin resistance. In addition to numerous preventive and therapeutic drug regimens, there has been increased focus on identifying dietary compounds that may contribute to cardiovascular health in recent years. Food-derived bioactive peptides represent one such source of health-enhancing components. They can be released during gastrointestinal digestion or food processing from a multitude of plant and animal proteins, especially milk, soy or fish proteins. Biologically active peptides are considered to promote diverse activities, including opiate-like, mineral binding, immunomodulatory, antimicrobial, antioxidant, antithrombotic, hypocholesterolemic and antihypertensive actions. By modulating and improving physiological functions, bioactive peptides may provide new therapeutic applications for the prevention or treatment of chronic diseases. As components of functional foods or nutraceuticals with certain health claims, bioactive peptides are of commercial interest as well. The current review centers on bioactive peptides with properties relevant to cardiovascular health.

Full-text

Available from: Kati Erdmann, Jan 28, 2015
1 Follower
 · 
198 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many proteins of food reveal biological activity. In the sequence of these proteins also numerous biologically active peptides are encrypted. These peptides are released during proteolysis naturally occurring in the gastrointestinal tract, food fermentation or during designed enzymatic hydrolysis in vitro. Biopeptides may exert multiple activities, affecting the cardiovascular, endocrine, nervous and immune systems. An especially rich source of bioactive proteins and biopeptides is egg. Bioactive peptides released from egg white proteins have been well described, whereas egg yolk proteins as precursors of biopeptides are less well characterized. This manuscript describes biologically active proteins and peptides originating from egg yolk and presents their potential therapeutic role.
    Postępy Higieny i Medycyny Doświadczalnej (Advances in Hygiene and Experimental Medicine) 01/2014; 68:1524-1529. DOI:10.5604/17322693.1133600 · 0.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that fish proteins can alleviate metabolic syndrome (MetS) in obese animals and human subjects. We tested whether a salmon peptide fraction (SPF) could improve MetS in mice and explored potential mechanisms of action. ApoB(100) only, LDL receptor knockout male mice (LDLR(-/-)/ApoB(100/100)) were fed a high-fat and -sucrose (HFS) diet (25 g/kg sucrose). Two groups were fed 10 g/kg casein hydrolysate (HFS), and 1 group was additionally fed 4.35 g/kg fish oil (FO; HFS+FO). Two other groups were fed 10 g/kg SPF (HFS+SPF), and 1 group was additionally fed 4.35 g/kg FO (HFS+SPF+FO). A fifth (reference) group was fed a standard feed pellet diet. We assessed the impact of dietary treatments on glucose tolerance, adipose tissue inflammation, lipid homeostasis, and hepatic insulin signaling. The effects of SPF on glucose uptake, hepatic glucose production, and inducible nitric oxide synthase activity were further studied in vitro with the use of L6 myocytes, FAO hepatocytes, and J774 macrophages. Mice fed HFS+SPF or HFS+SPF+FO diets had lower body weight (protein effect, P = 0.024), feed efficiency (protein effect, P = 0.018), and liver weight (protein effect, P = 0.003) as well as lower concentrations of adipose tissue cytokines and chemokines (protein effect, P ≤ 0.003) compared with HFS and HFS+FO groups. They also had greater glucose tolerance (protein effect, P < 0.001), lower activation of the mammalian target of rapamycin complex 1/S6 kinase 1/insulin receptor substrate 1 (mTORC1/S6K1/IRS1) pathway, and increased insulin signaling in liver compared with the HFS and HFS+FO groups. The HFS+FO, HFS+SPF, and HFS+SPF+FO groups had lower plasma triglycerides (protein effect, P = 0.003; lipid effect, P = 0.002) than did the HFS group. SPF increased glucose uptake and decreased HGP and iNOS activation in vitro. SPF reduces obesity-linked MetS features in LDLR(-/-)/ApoB(100/100) mice. The anti-inflammatory and glucoregulatory properties of SPF were confirmed in L6 myocytes, FAO hepatocytes, and J774 macrophages. © 2015 American Society for Nutrition.
    Journal of Nutrition 05/2015; DOI:10.3945/jn.114.208215 · 4.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hsp70(241–258), an octadecapeptide derived from the heat shock protein 70 (Hsp70) of rice (Oryza sativa L. japonica), is a novel cationic α-helical antimicrobial peptide (AMP) that contains four lysine, two arginine, and two histidine residues. The antimicrobial activity of Hsp70(241–258) against Porphyromonas gingivalis, a periodontal pathogen, and Candida albicans, an opportunistic fungal pathogen, was quantitatively evaluated using a chemiluminescence method that measures ATP derived from viable cells. The 50% growth-inhibitory concentrations of Hsp70(241–258) against P. gingivalis and C. albicans cells were 63 μM and 70 μM, respectively. Hsp70(241–258) had little or no hemolytic activity even at 1 mM, and showed negligible cytotoxicity up to 300 μM. The degrees of calcein leakage from large unilamellar vesicles, which mimic the membranes of Gram-negative bacteria, and 3,3′-dipropylthiadicarbocyanine iodide release from P. gingivalis cells induced by the addition of Hsp70(241–258) increased in a concentration-dependent manner. When Hsp70(241–258) was added to calcein-acetoxymethyl ester-loaded C. albicans cells, calcein release from the cells increased in a concentration-dependent manner. Flow cytometric analysis also showed that the percentages of C. albicans cells stained with propidium iodide, a DNA-intercalating dye, increased as the concentration of Hsp70(241–258) added was increased. Therefore, Hsp70(241–258) appears to exhibit antimicrobial activity against P. gingivalis and C. albicans through membrane disruption. These results suggest that Hsp70(241–258) could be useful as a safe and potent AMP against P. gingivalis and C. albicans in many fields of health care, especially in the control of oral infections.