Article

Preliminary evidence for a modulation of fetal dopaminergic development by maternal immune activation during pregnancy.

Laboratory of Behavioural Neurobiology, ETH Zurich, Schorenstrasse 16, Schwerzenbach, Switzerland.
Neuroscience (Impact Factor: 3.33). 07/2008; 154(2):701-9. DOI: 10.1016/j.neuroscience.2008.04.031
Source: PubMed

ABSTRACT Maternal infection during pregnancy is an environmental risk factor for the offspring to develop severe brain disorders, including schizophrenia and autism. However, only little is known about the neurodevelopmental mechanisms underlying the association between prenatal exposure to infection and the emergence of brain and behavioral dysfunctions in later life. Using a mouse model of prenatal immune challenge by the viral mimic polyriboinosinic-polyribocytidilic acid (PolyI:C), we explored the acute effects of maternal immune activation during pregnancy on the development of the fetal dopaminergic system, a neurotransmitter system known to be affected in schizophrenia and related disorders. We found that maternal immunological stimulation in early/middle pregnancy increased the number of mesencephalic dopamine neurons in the fetal brain at middle/late and late gestation. This effect was paralleled by changes in fetal expression of several genes known to be involved in dopamine neuron development, including the inductive signals sonic hedgehog (Shh) and fibroblast growth factor 8 (Fgf8), as well as transcription factors Nurr1 and Pitx3. These findings provide initial in vivo evidence for a modulation of fetal dopaminergic development by maternal immune activation during pregnancy. Additional investigations of the neurodevelopmental effects of prenatal immune challenge are thus clearly warranted in order to further validate whether abnormal dopaminergic development may be a critical neuropathological mechanism underlying the precipitation of schizophrenia-like brain and behavioral dysfunctions emerging after in utero exposure to infection.

0 Followers
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological evidence has established links between immune activation during the prenatal or early postnatal period and increased risk of developing a range of neurodevelopment disorders in later life. Animal models have been used to great effect to explore the ramifications of immune activation during gestation and neonatal life. A range of behavioral, neurochemical, molecular, and structural outcome measures associated with schizophrenia, autism, cerebral palsy, and epilepsy have been assessed in models of prenatal and postnatal immune activation. However, the epidemiology-driven disease-first approach taken by some studies can be limiting and, despite the wealth of data, there is a lack of consensus in the literature as to the specific dose, timing, and nature of the immunogen that results in replicable and reproducible changes related to a single disease phenotype. In this review, we highlight a number of similarities and differences in models of prenatal and postnatal immune activation currently being used to investigate the origins of schizophrenia, autism, cerebral palsy, epilepsy, and Parkinson's disease. However, we describe a lack of synthesis not only between but also within disease-specific models. Our inability to compare the equivalency dose of immunogen used is identified as a significant yet easily remedied problem. We ask whether early life exposure to infection should be described as a disease-specific or general vulnerability factor for neurodevelopmental disorders and discuss the implications that either classification has on the design, strengths and limitations offuture experiments. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2012.
    Developmental Neurobiology 10/2012; 72(10):1335-48. DOI:10.1002/dneu.22043 · 4.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 1995, the macrophage-T lymphocyte theory of schizophrenia (Smith and Maes, 1995) considered that activated immuno-inflammatory pathways may account for the higher neurodevelopmental pathology linked with gestational infections through the detrimental effects of activated microglia, oxidative and nitrosative stress (O&NS), cytokine-induced activation of the tryptophan catabolite (TRYCAT) pathway and consequent modulation of the N-methyl d-aspartate receptor (NMDAr) and glutamate production. The aim of the present paper is to review the current state-of-the art regarding the role of the above pathways in schizophrenia. Accumulating data suggest a powerful role for prenatal infection, both viral and microbial, in driving an early developmental etiology to schizophrenia. Models of prenatal rodent infection show maintained activation of immuno-inflammatory pathways coupled to increased microglia activation. The ensuing activation of immuno-inflammatory pathways in schizophrenia may activate the TRYCAT pathway, including increased kynurenic acid (KA) and neurotoxic TRYCATs. Increased KA, via the inhibition of the α7 nicotinic acetylcholine receptor, lowers gamma-amino-butyric-acid (GABA)ergic post-synaptic current, contributing to dysregulated glutamatergic activity. Hypofunctioning of the NMDAr on GABAergic interneurons will contribute to glutamatergic dysregulation. Many susceptibility genes for schizophrenia are predominantly expressed in early development and will interact with these early developmental driven changes in the immuno-inflammatory and TRYCAT pathways. Maternal infection and subsequent immuno-inflammatory responses are additionally associated with O&NS, including lowered antioxidants such as glutathione. This will contribute to alterations in neurogenesis and myelination. In such a scenario a) a genetic or epigenetic potentiation of immuno-inflammatory pathways may constitute a double hit on their own, stimulating wider immuno-inflammatory responses and thus potentiating the TRYCAT pathway and subsequent NMDAr dysfunction and neuroprogression; and b) antipsychotic-induced changes in immuno-inflammatory, TRYCAT and O&NS pathways would modulate the CNS glia-neuronal interactions that determine synaptic plasticity as well as myelin generation and maintenance.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 07/2012; 42. DOI:10.1016/j.pnpbp.2012.06.014 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Idiopathic Parkinson's disease (PD) represents a complex interaction between the inherent vulnerability of the nigrostriatal dopaminergic system, a possible genetic predisposition, and exposure to environmental toxins including inflammatory triggers. Evidence now suggests that chronic neuroinflammation is consistently associated with the pathophysiology of PD. Activation of microglia and increased levels of pro-inflammatory mediators such as TNF-α, IL-1β and IL-6, reactive oxygen species and eicosanoids has been reported after post-mortem analysis of the substantia nigra from PD patients and in animal models of PD. It is hypothesised that chronically activated microglia secrete high levels of pro-inflammatory mediators which damage neurons and further activate microglia, resulting in a feed forward cycle promoting further inflammation and neurodegeneration. Moreover, nigrostriatal dopaminergic neurons are more vulnerable to pro-inflammatory and oxidative mediators than other cell types because of their low intracellular glutathione concentration. Systemic inflammation has also been suggested to contribute to neurodegeneration in PD, as lymphocyte infiltration has been observed in brains of PD patients and in animal models of PD, substantiating the current theory of a fundamental role of inflammation in neurodegeneration. We will examine the current evidence in the literature which offers insight into the premise that both central and systemic inflammation may contribute to neurodegeneration in PD. We will discuss the emerging possibility of the use of diagnostic tools such as imaging technologies for PD patients. Finally, we will present the immunomodulatory therapeutic strategies that are now under investigation and in clinical trials as potential neuroprotective drugs for PD.
    Neuropharmacology 02/2012; 62(7):2154-68. DOI:10.1016/j.neuropharm.2012.01.028 · 4.82 Impact Factor