Efficient catalytic decomposition of CO2 to CO and O2 over Pd/ mixed-conducting oxide catalyst in an oxygen-permeable membrane reactor.

State Key Laboratory of Materials-Oriented Chemical Engineering, Membrane Science and Technology Research Center, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009, PR China.
Environmental Science and Technology (Impact Factor: 5.48). 05/2008; 42(8):3064-8. DOI: 10.1021/es702913f
Source: PubMed

ABSTRACT The thermal decomposition of CO2 to CO and O2 is a potential route for the consumption and utilization of CO2. However, this reaction is limited by both the thermodynamic equilibrium and the kinetic barrier. In this study, we reported an innovative catalytic process to decompose CO2 in an oxygen-permeation membrane reactor packed with a mixed-conducting oxide supported noble metal catalyst, or Pd/SrCo0.4Fe0.5Zr0.1O3-delta (Pd/ SCFZ), which is of high activity in the decomposition of CO2 into CO and O2. Pd/SCFZ catalyst was prepared by incipient wetness impregnation of the SCFZ powders with an aqueous solution of PdCl2, and the CO2 sorption/desorption property was examined by in situ Fourier transform infrared spectroscopy and temperature-programmed desorption-mass spectrometry technologies. It was shown that there appeared a typical of bridged carbonyls (Pd-CO) on the surface of the Pd/SCFZ catalyst formed after CO2 decomposition. Both CO2 and CO could be detected in the species desorbed from Pd/SCFZ catalyst, which implied that the Pd/SCFZ catalyst could effectively activate the CO2 molecule. During the catalytic process, furthermore, the activity of the Pd/SCFZ catalyst can self-regenerate by removing the produced lattice oxygen through the dense oxygen-permeable ceramic membrane. At 900 degrees C, this catalytic process attains 100% of CO formation selectivity at 15.8% of CO2 conversions.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Energy issues are important and consumption is slated to increase across the globe in the future. The energy-environment nexus is very important as strategies to meet future energy demand are developed. To ensure sustainable growth and development, it is essential that energy production is environmentally benign. There are two temporal issues—one that is immediate, and needs to address the environmental compliance of energy generation from fossil fuel sources; and second that is the need to develop newer alternate and more sustainable approaches in the future. Aerosol science and technology is an enabling discipline that addresses the energy issue over both these time scales. The paper is a review of aspects of aerosol science and engineering that helps address carbon neutrality of fossil fuels. Advanced materials to meet these challenges are discussed. Future approaches to effective harvesting of sunlight that are enabled by aerosol studies are discussed. Keywordsenergy-environment nexus–aerosol science and technology–fossil fuels–carbon dioxide conversion–solar energy–nanoparticle technology
    Frontiers of Environmental Science & Engineering in China 01/2011; 5(3):299-312. · 0.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Catalytic membrane reactors which carry out separation and reaction in a single unit are expected to be a promising approach to achieve green and sustainable chemistry with less energy consumption and lower pollution. This article presents a review of the recent progress of dense ceramic catalytic membranes and membrane reactors, and their potential applications in energy and environmental areas. A basic knowledge of catalytic membranes and membrane reactors is first introduced briefly, followed by a short discussion on the membrane materials including their structures, composition and strategies for material development. The configuration of catalytic membranes, the design of membrane reaction processes and the high temperature sealing are also discussed. The performance of catalytic membrane reactors for energy and environmental applications are summarized and typical catalytic membrane reaction processes are presented and discussed. Finally, current challenges and difficulties related to the industrialization of dense ceramic membrane reactors are addressed and possible future research is also outlined.
    Chemical Communications 07/2011; 47(39):10886-902. · 6.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Solid electrolytes have found applications in several areas, including (a) sensors, (b) separators, (c) solid oxide fuel cells, and (d) solid-state batteries. In addition, solid electrolytes have been used in the construction of solid electrolyte cell reactors (SECRs), in which heterogeneous catalytic reactions have been studied. Also, SECRs have been used as chemical cogenerative fuel cells, i.e., for the simultaneous production of electricity and useful compounds. In the present work, a survey of the studies conducted in SECRs is presented. The fundamental operating principles, results in technologically important reactions, and the hurdles that should be overcome to bring SECRs into industrial practice are discussed.
    ChemInform 01/2010;