Fat redistribution and adipocyte transformation in uninephrectomized rats.

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China.
Kidney International (Impact Factor: 8.52). 06/2008; 74(4):467-77. DOI: 10.1038/ki.2008.195
Source: PubMed

ABSTRACT Dyslipidemia complicates renal function leading to disturbances of major homeostatic organs in the body. Here we examined the effect of chronic renal dysfunction induced by uninephrectomy on fat redistribution and lipid peroxidation in rats treated with an angiotensin-converting enzyme (ACE) inhibitor (lisinopril) for up to 10 months. Uninephrectomized rats developed fat redistribution and hypercholesterolemia typical of chronic renal failure when compared with sham-operated rats or lisinopril-treated uninephrectomized rats. The weight of the peri-renal fat was significantly less in the untreated compared to the lisinopril-treated uninephrectomized rats or those rats with a sham operation. We also found that there was a shift of heat-protecting unilocular adipocytes to heat-producing multilocular fat cells in the untreated uninephrectomized rats. Similarly in these rats we found a shift of subcutaneous and visceral fat to ectopic fat with excessive lipid accumulation and lipofuscin pigmentation. Lisinopril treatment prevented fat redistribution or transformation and lipid peroxidation. This study shows that ACE inhibition may prevent the fat anomalies associated with chronic renal dysfunction.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ectopic lipid accumulation is now known to be a mechanism that contributes to organ injury in the context of metabolic diseases. In muscle and liver, accumulation of lipids impairs insulin signaling. This hypothesis accounts for the mechanism of insulin resistance in obesity, type 2 diabetes, aging and lipodystrophy. Increasing data suggest that lipid accumulation in the kidneys could also contribute to the alteration of kidney function in the context of metabolic syndrome and obesity. Furthermore and more unexpectedly, animal models of kidney disease exhibit a decreased adiposity and ectopic lipid redistribution suggesting that kidney disease may be a state of lipodystrophy. However, whether this abnormal lipid partitioning during chronic kidney disease (CKD) may have any functional impact in these tissues needs to be investigated. Here, we provide a perspective by defining the problem and analyzing the possible causes and consequences. Further human studies are required to strengthen these observations, and provide novel therapeutic approaches.
    Biochimie 07/2013; · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin resistance (IR) is a common feature of chronic kidney disease (CKD), but the underlying mechanisms still remain unclear. A growing body of evidence suggests that IR and its associated metabolic disorders are important contributors for the cardiovascular burden of these patients. In recent years, the modification of the intestinal flora and activation of inflammation pathways have been implicated in the pathogenesis of IR in obese and diabetic patients. All these pathways ultimately lead to lipid accumulation in ectopic sites and impair insulin signalling. These important discoveries have led to major advances in understanding the mechanisms of uraemia-induced IR. Indeed, recent studies show impairment of the intestinal barrier function and changes in the composition of the gut microbiome during CKD that can contribute to the prevailing inflammation, and the production and absorption of toxins generated from bacterial metabolism. The specific role of individual uraemic toxins in the pathogenesis of IR has been highlighted in rodents. Moreover, correcting some uraemia-associated factors by modulating the intestinal flora improves insulin sensitivity. This review outlines potential mechanisms by which important modifications of body homeostasis induced by the decline in kidney function can affect insulin sensitivity, and the relevance of recent advances in the field to provide novel therapeutic approaches to reduce IR associated cardiovascular mortality.
    Nephrology Dialysis Transplantation 11/2013; · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetic nephropathy (DN) is a secondary complication of both type 1 and type 2 diabetes, resulting from uncontrolled high blood sugar. 30-40 % of diabetic patients develop DN associated with a poor life expectancy and end-stage renal disease, causing serious socioeconomic problems. Although an exact pathogenesis of DN is still unknown, several factors such as hyperglycemia, hyperlipidemia, hypertension and proteinuria may contribute to the progression of renal damage in diabetic nephropathy. DN is confirmed by measuring blood urea nitrogen, serum creatinine, creatinine clearance and proteinuria. Clinical studies show that intensive control of hyperglycemia and blood pressure could successfully reduce proteinuria, which is the main sign of glomerular lesions in DN, and improve the renal prognosis in patients with DN. Diabetic rodent models have traditionally been used for doing research on pathogenesis and developing novel therapeutic strategies, but have limitations for translational research. Diabetes in animal models such as rodents are induced either spontaneously or by using chemical, surgical, genetic, or other techniques and depicts many clinical features or related phenotypes of the disease. This review discusses the merits and demerits of the models, which are used for many reasons in the research of diabetes and diabetic complications.
    Inflammopharmacology 08/2014;


Available from
May 31, 2014