Article

Fat redistribution and adipocyte transformation in uninephrectomized rats.

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China.
Kidney International (Impact Factor: 8.52). 06/2008; 74(4):467-77. DOI: 10.1038/ki.2008.195
Source: PubMed

ABSTRACT Dyslipidemia complicates renal function leading to disturbances of major homeostatic organs in the body. Here we examined the effect of chronic renal dysfunction induced by uninephrectomy on fat redistribution and lipid peroxidation in rats treated with an angiotensin-converting enzyme (ACE) inhibitor (lisinopril) for up to 10 months. Uninephrectomized rats developed fat redistribution and hypercholesterolemia typical of chronic renal failure when compared with sham-operated rats or lisinopril-treated uninephrectomized rats. The weight of the peri-renal fat was significantly less in the untreated compared to the lisinopril-treated uninephrectomized rats or those rats with a sham operation. We also found that there was a shift of heat-protecting unilocular adipocytes to heat-producing multilocular fat cells in the untreated uninephrectomized rats. Similarly in these rats we found a shift of subcutaneous and visceral fat to ectopic fat with excessive lipid accumulation and lipofuscin pigmentation. Lisinopril treatment prevented fat redistribution or transformation and lipid peroxidation. This study shows that ACE inhibition may prevent the fat anomalies associated with chronic renal dysfunction.

0 Bookmarks
 · 
195 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic kidney disease (CKD) is frequently associated with protein-energy wasting, a recognized strong predictive factor of mortality. Zinc α2-glycoprotein (ZAG) is a new adipokine involved in body weight control through its lipid-mobilizing activity. Here we tested whether the uremic environment in CKD could alter ZAG production by white adipose tissue and contribute to CKD-associated metabolic disturbances. Compared with normal plasma, uremic plasma induced a significant increase in ZAG synthesis (124%), was associated with a significant increase in basal lipolysis (31%), and significantly blunted lipogenesis (-53%) in 3T3-L1 adipocytes in vitro. In 5/6 nephrectomized rats and mice in vivo, there was a significant decrease in white adipose tissue accretion (-44% and -43%, respectively) and a significantly higher white adipose tissue content of ZAG protein than in sham-operated, pair-fed control animals (498% and 106%, respectively). Subcutaneous white adipose tissue biopsies from patients with end-stage renal disease exhibited a higher content of ZAG (573%) than age-matched controls. Thus, the ZAG content is increased in white adipose tissue from patients or animal models with CKD. Overproduction of ZAG in CKD could be a major contributor to metabolic disturbances associated with CKD.Kidney International advance online publication, 20 February 2013; doi:10.1038/ki.2013.9.
    Kidney International 02/2013; · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin resistance (IR) is a common feature of chronic kidney disease (CKD), but the underlying mechanisms still remain unclear. A growing body of evidence suggests that IR and its associated metabolic disorders are important contributors for the cardiovascular burden of these patients. In recent years, the modification of the intestinal flora and activation of inflammation pathways have been implicated in the pathogenesis of IR in obese and diabetic patients. All these pathways ultimately lead to lipid accumulation in ectopic sites and impair insulin signalling. These important discoveries have led to major advances in understanding the mechanisms of uraemia-induced IR. Indeed, recent studies show impairment of the intestinal barrier function and changes in the composition of the gut microbiome during CKD that can contribute to the prevailing inflammation, and the production and absorption of toxins generated from bacterial metabolism. The specific role of individual uraemic toxins in the pathogenesis of IR has been highlighted in rodents. Moreover, correcting some uraemia-associated factors by modulating the intestinal flora improves insulin sensitivity. This review outlines potential mechanisms by which important modifications of body homeostasis induced by the decline in kidney function can affect insulin sensitivity, and the relevance of recent advances in the field to provide novel therapeutic approaches to reduce IR associated cardiovascular mortality.
    Nephrology Dialysis Transplantation 11/2013; · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetic nephropathy (DN) is a secondary complication of both type 1 and type 2 diabetes, resulting from uncontrolled high blood sugar. 30-40 % of diabetic patients develop DN associated with a poor life expectancy and end-stage renal disease, causing serious socioeconomic problems. Although an exact pathogenesis of DN is still unknown, several factors such as hyperglycemia, hyperlipidemia, hypertension and proteinuria may contribute to the progression of renal damage in diabetic nephropathy. DN is confirmed by measuring blood urea nitrogen, serum creatinine, creatinine clearance and proteinuria. Clinical studies show that intensive control of hyperglycemia and blood pressure could successfully reduce proteinuria, which is the main sign of glomerular lesions in DN, and improve the renal prognosis in patients with DN. Diabetic rodent models have traditionally been used for doing research on pathogenesis and developing novel therapeutic strategies, but have limitations for translational research. Diabetes in animal models such as rodents are induced either spontaneously or by using chemical, surgical, genetic, or other techniques and depicts many clinical features or related phenotypes of the disease. This review discusses the merits and demerits of the models, which are used for many reasons in the research of diabetes and diabetic complications.
    Inflammopharmacology 08/2014;

Full-text

View
55 Downloads
Available from
May 31, 2014